Pregunta
upstudy study bank question image url

1 - Chapters \( 1=3 \) (Practice Exam) Use z scores to compare the given values. The tallest living man at one time had a height of 226 cm . The shortest living man at that time had a height of 133.3 cm . Heights of men at that time had a mean of 171.41 cm and a Which of these two men had the height that was more extreme? 5.21 of 25 points Since the \( z \) score for the tallest man is \( z=10.54 \) and the \( z \) score for the shortest man is \( z=-7.36 \), the tallest 1 ? man had the height that was more extreme. (Round to two decimal places.)

Ask by Burns King. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The tallest man had the height that was more extreme.

Solución

To determine which of the two men had a height that was more extreme, we can compare their \( z \) scores. The \( z \) score is calculated using the formula: \[ z = \frac{(X - \mu)}{\sigma} \] where: - \( X \) is the value being compared (height in this case), - \( \mu \) is the mean of the distribution, - \( \sigma \) is the standard deviation of the distribution. From the problem, we have: - Height of the tallest man, \( X_1 = 226 \) cm - Height of the shortest man, \( X_2 = 133.3 \) cm - Mean height, \( \mu = 171.41 \) cm - \( z \) score for the tallest man, \( z_1 = 10.54 \) - \( z \) score for the shortest man, \( z_2 = -7.36 \) ### Step 1: Compare the absolute values of the \( z \) scores The absolute value of a \( z \) score indicates how many standard deviations a value is from the mean. The more extreme the height, the larger the absolute value of the \( z \) score. Calculating the absolute values: - For the tallest man: \( |z_1| = |10.54| = 10.54 \) - For the shortest man: \( |z_2| = |-7.36| = 7.36 \) ### Step 2: Determine which \( z \) score is more extreme Now we compare the absolute values: - \( |z_1| = 10.54 \) - \( |z_2| = 7.36 \) Since \( 10.54 > 7.36 \), the tallest man had the height that was more extreme. ### Conclusion Thus, the tallest man had the height that was more extreme.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that z-scores are a super fun way to understand how far a value is from the average? In fact, a z-score tells us how many standard deviations a particular value lies above or below the mean. The farther the z-score from zero (whether positive or negative), the more extreme the height! In practical settings, z-scores are used in everything from standardizing tests to quality control in manufacturing. By converting individual scores or measurements into a standard format, we can effectively compare different data sets. So whether you're analyzing heights, test scores, or even financial returns, z-scores help keep things on the same scale!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad