Pregunta
upstudy study bank question image url

Part 3 of 6 Points: 0 of 1 The equation, with a restriction on \( x \), is the terminal side of an angle \( \theta \) in standard position. \( 3 x+y=0, x \geq 0 \) Give the exact values of the six trigonometric functions of \( \theta \). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \sin \theta=-\frac{3 \sqrt{10}}{10} \) (Simplify your answer. Use integers or fractions for any numbers in the expression. Type an exact answer, using radicals as needed, Rationalize all denominators.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \cos \theta=\frac{\sqrt{10}}{10} \) (Simplify your answer. Use integers or fractions for any numbers in the expression. Type an exact answer, using radicals as needed. Rationalize all denominators.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \tan \theta= \) \( \square \) (Simplify your answer. Use integers or fractions for any numbers in the expression. Type an exact answer, using radicals as needed. Rationalize all denominators.) B. The function is undefined.

Ask by Cruz Bond. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \begin{align*} \sin \theta &= -\frac{3\sqrt{10}}{10} \\ \cos \theta &= \frac{\sqrt{10}}{10} \\ \tan \theta &= -3 \end{align*} \]

Solución

Let's determine the exact values of the six trigonometric functions for the angle \( \theta \) given the equation \( 3x + y = 0 \) with the restriction \( x \geq 0 \). ### Step 1: Determine the Relationship The equation \( 3x + y = 0 \) can be rewritten as: \[ y = -3x \] This represents a line with a slope of \(-3\). Since \( x \geq 0 \) and the slope is negative, the terminal side of the angle \( \theta \) lies in the **fourth quadrant**. ### Step 2: Find Coordinates and Radius Choose a convenient value for \( x \). Let \( x = 1 \): \[ y = -3(1) = -3 \] So, the point on the terminal side is \( (1, -3) \). Calculate the radius \( r \): \[ r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \] ### Step 3: Calculate Trigonometric Functions 1. **Sine (\( \sin \theta \))** \[ \sin \theta = \frac{y}{r} = \frac{-3}{\sqrt{10}} = -\frac{3\sqrt{10}}{10} \] **Choice A is correct:** \[ \sin \theta = -\frac{3\sqrt{10}}{10} \] 2. **Cosine (\( \cos \theta \))** \[ \cos \theta = \frac{x}{r} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10} \] **Choice A is correct:** \[ \cos \theta = \frac{\sqrt{10}}{10} \] 3. **Tangent (\( \tan \theta \))** \[ \tan \theta = \frac{y}{x} = \frac{-3}{1} = -3 \] **Choice A is correct:** \[ \tan \theta = -3 \] ### Summary of Exact Values \[ \begin{align*} \sin \theta &= -\frac{3\sqrt{10}}{10} \\ \cos \theta &= \frac{\sqrt{10}}{10} \\ \tan \theta &= -3 \\ \csc \theta &= -\frac{\sqrt{10}}{3} \\ \sec \theta &= \sqrt{10} \\ \cot \theta &= -\frac{1}{3} \end{align*} \] For the parts you've provided: - **Sine (\( \sin \theta \))**: **A.** \( \sin \theta = -\frac{3\sqrt{10}}{10} \) - **Cosine (\( \cos \theta \))**: **A.** \( \cos \theta = \frac{\sqrt{10}}{10} \) - **Tangent (\( \tan \theta \))**: **A.** \( \tan \theta = -3 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the exact values of the six trigonometric functions given the equation \(3x + y = 0\) and the restriction \(x \geq 0\), we can rearrange the equation to \(y = -3x\). For the angle \(\theta\) formed by this line in the Cartesian coordinate system, let's express the values of \(x\) and \(y\) in terms of a right triangle. The coordinates of any point on the line can be expressed as \((x, -3x)\). To find the lengths required for the trigonometric functions, we can calculate the hypotenuse \(r\): \[ r = \sqrt{x^2 + y^2} = \sqrt{x^2 + (-3x)^2} = \sqrt{x^2 + 9x^2} = \sqrt{10x^2} = \sqrt{10} |x| \] Now, we know that: - \(\sin \theta = \frac{y}{r} = \frac{-3x}{\sqrt{10} |x|} = -\frac{3}{\sqrt{10}}\) (since \(x \geq 0\)). - \(\cos \theta = \frac{x}{r} = \frac{x}{\sqrt{10} |x|} = \frac{1}{\sqrt{10}}\). - \(\tan \theta = \frac{y}{x} = \frac{-3x}{x} = -3\) (for \(x \neq 0\)). Therefore, summarizing: 1. \(\sin \theta = -\frac{3 \sqrt{10}}{10}\) 2. \(\cos \theta = \frac{\sqrt{10}}{10}\) 3. \(\tan \theta = -3\) So the exact values of the six trigonometric functions of \(\theta\) can be computed accordingly as follows: 1. \( \sin \theta = -\frac{3 \sqrt{10}}{10} \) 2. \( \cos \theta = \frac{\sqrt{10}}{10} \) 3. \( \tan \theta = -3 \) Lastly, the other trigonometric functions can be derived from these, specifically: - \( \csc \theta = -\frac{10}{3\sqrt{10}} \) - \( \sec \theta = \sqrt{10} \) - \( \cot \theta = -\frac{1}{3} \) The trigonometric functions are fully defined as long as \(x \neq 0\), otherwise some will be undefined.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad