Pregunta
upstudy study bank question image url

Determine if the following functions have crossover points: \( \begin{array}{ll}\text { a) } f(x)=\frac{(2-x)(3 x+2)}{x^{2}} & \text { b) } f(x)=\frac{2 x^{3}-3 x^{2}+x-3}{x^{2}+1}\end{array} \)

Ask by Vaughn Reeves. in Canada
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Functions a) and b) have two and one crossover point(s) respectively.

Solución

To determine if the given functions have crossover points (i.e., points where \( f(x) = 0 \)), we'll analyze each function separately. ### a) \( f(x) = \frac{(2 - x)(3x + 2)}{x^2} \) **Finding Crossover Points:** Set \( f(x) = 0 \): \[ \frac{(2 - x)(3x + 2)}{x^2} = 0 \] The fraction equals zero when the **numerator** is zero (since the denominator \( x^2 \) cannot be zero). \[ (2 - x)(3x + 2) = 0 \] Solving for \( x \): 1. \( 2 - x = 0 \) \( x = 2 \) 2. \( 3x + 2 = 0 \) \( x = -\frac{2}{3} \) **Conclusion for Part a):** The function \( f(x) \) has two crossover points at \( x = 2 \) and \( x = -\frac{2}{3} \). --- ### b) \( f(x) = \frac{2x^3 - 3x^2 + x - 3}{x^2 + 1} \) **Finding Crossover Points:** Set \( f(x) = 0 \): \[ \frac{2x^3 - 3x^2 + x - 3}{x^2 + 1} = 0 \] Again, the fraction equals zero when the **numerator** is zero. \[ 2x^3 - 3x^2 + x - 3 = 0 \] **Solving the Cubic Equation:** - **Rational Root Theorem:** Possible rational roots are \( \pm1, \pm3, \pm\frac{1}{2}, \pm\frac{3}{2} \). - **Testing Possible Roots:** - \( x = 1 \): \( 2(1)^3 - 3(1)^2 + 1 - 3 = 2 - 3 + 1 - 3 = -3 \neq 0 \) - \( x = -1 \): \( 2(-1)^3 - 3(-1)^2 + (-1) - 3 = -2 - 3 - 1 - 3 = -9 \neq 0 \) - \( x = \frac{3}{2} \): \( 2\left(\frac{27}{8}\right) - 3\left(\frac{9}{4}\right) + \frac{3}{2} - 3 = \frac{27}{4} - \frac{27}{4} + \frac{3}{2} - 3 = -\frac{3}{2} \neq 0 \) Since none of the rational roots work, we'll analyze the behavior of the cubic polynomial: - **End Behavior:** - As \( x \to \infty \), \( 2x^3 \) dominates, so \( f(x) \to \infty \). - As \( x \to -\infty \), \( 2x^3 \) dominates, so \( f(x) \to -\infty \). - **Derivative for Critical Points:** - \( f'(x) = 6x^2 - 6x + 1 \) - Solving \( f'(x) = 0 \) gives two critical points, indicating potential changes in direction. Given the behavior and absence of additional real roots from rational testing, the cubic equation likely has **one real root**. **Conclusion for Part b):** The function \( f(x) \) has **one** crossover point. --- ### **Final Answer:** a) Two crossover points; b) One crossover point.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine if the functions have crossover points, we need to check if these functions, \( f(x) \), intersect at any points. For **function a**: 1. Start with the function \( f(x) = \frac{(2-x)(3x+2)}{x^2} \). 2. To find crossovers, set \( f(x) \) equal to 0: \( (2-x)(3x+2) = 0 \). This gives us two solutions: - \( 2 - x = 0 \) ⇒ \( x = 2 \) - \( 3x + 2 = 0 \) ⇒ \( x = -\frac{2}{3} \) Thus, for function a, there are likely crossover points at \( x = 2 \) and \( x = -\frac{2}{3} \). For **function b**: 1. The function is \( f(x) = \frac{2x^3 - 3x^2 + x - 3}{x^2 + 1} \). 2. To find crossover points, we set the numerator equal to 0: \( 2x^3 - 3x^2 + x - 3 = 0 \). 3. Use the Rational Root Theorem or substitute potential rational roots (like ±1, ±3) to find roots. After checking, you may find a root at \( x = 1 \). To confirm this, factor or use synthetic division to reduce \( 2x^3 - 3x^2 + x - 3 \) further. There might be additional roots, but they can be complex or less easy to identify. Thus, function b may have one or more crossover points, including at \( x=1 \). In conclusion, both functions have crossover points, with specific values determined along the way! Happy graphing!

preguntas relacionadas

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad