Pregunta
upstudy study bank question image url

rallel to AC meets BC at E . Find the co-ordinates of point E . press the function \( f(x)=\frac{x+2}{\left(x^{2}+1\right)(2 x-1)} \) as a sum of partial fractions. Hence find \( \int_{2}^{3} f(x) d x \), co 4 decimal places

Ask by Turner Guerrero. in Uganda
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After decomposing the function, \( f(x) = \frac{-x}{x^2 + 1} + \frac{2}{2x - 1} \). The definite integral from 2 to 3 is approximately 0.1643.

Solución

To solve the given problem, we'll perform the following steps: 1. **Decompose the function \( f(x) \) into partial fractions.** 2. **Evaluate the definite integral of \( f(x) \) from 2 to 3.** Let's proceed step-by-step. --- ### 1. Partial Fraction Decomposition Given the function: \[ f(x) = \frac{x + 2}{(x^2 + 1)(2x - 1)} \] We aim to express \( f(x) \) as a sum of simpler fractions: \[ \frac{x + 2}{(x^2 + 1)(2x - 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{2x - 1} \] **Step-by-Step Decomposition:** 1. **Set Up the Equation:** \[ \frac{x + 2}{(x^2 + 1)(2x - 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{2x - 1} \] 2. **Multiply Both Sides by \((x^2 + 1)(2x - 1)\) to Clear the Denominator:** \[ x + 2 = (Ax + B)(2x - 1) + C(x^2 + 1) \] 3. **Expand the Right Side:** \[ x + 2 = 2Ax^2 - Ax + 2Bx - B + Cx^2 + C \] 4. **Combine Like Terms:** \[ x + 2 = (2A + C)x^2 + (-A + 2B)x + (-B + C) \] 5. **Set Up a System of Equations by Equating Coefficients:** \[ \begin{cases} 2A + C = 0 \quad &\text{(Coefficient of } x^2\text{)} \\ -A + 2B = 1 \quad &\text{(Coefficient of } x\text{)} \\ -B + C = 2 \quad &\text{(Constant term)} \end{cases} \] 6. **Solve the System:** - From the first equation: \( C = -2A \) - Substitute \( C \) into the third equation: \( -B - 2A = 2 \) → \( B + 2A = -2 \) - Substitute \( B = -2 - 2A \) into the second equation: \( -A + 2(-2 - 2A) = 1 \) → \( -A - 4 - 4A = 1 \) → \( -5A = 5 \) → \( A = -1 \) - Then, \( B = -2 - 2(-1) = 0 \) - Finally, \( C = -2(-1) = 2 \) 7. **Write the Partial Fractions:** \[ f(x) = \frac{-x}{x^2 + 1} + \frac{2}{2x - 1} \] --- ### 2. Evaluating the Definite Integral We now compute: \[ \int_{2}^{3} f(x)\,dx = \int_{2}^{3} \left( \frac{-x}{x^2 + 1} + \frac{2}{2x - 1} \right) dx \] **Step-by-Step Integration:** 1. **Separate the Integral:** \[ \int \frac{-x}{x^2 + 1} \, dx + \int \frac{2}{2x - 1} \, dx \] 2. **Integrate Each Term Individually:** - **First Integral:** \[ \int \frac{-x}{x^2 + 1} \, dx \] Let \( u = x^2 + 1 \), then \( du = 2x\,dx \). \[ \int \frac{-x}{x^2 + 1} \, dx = -\frac{1}{2} \ln|x^2 + 1| + C \] - **Second Integral:** \[ \int \frac{2}{2x - 1} \, dx \] Let \( u = 2x - 1 \), then \( du = 2\,dx \), so \( dx = \frac{du}{2} \). \[ \int \frac{2}{2x - 1} \, dx = \ln|2x - 1| + C \] 3. **Combine the Results:** \[ \int f(x)\,dx = -\frac{1}{2} \ln(x^2 + 1) + \ln(2x - 1) + C \] 4. **Evaluate from 2 to 3:** \[ \left[ -\frac{1}{2} \ln(x^2 + 1) + \ln(2x - 1) \right]_{2}^{3} \] \[ = \left( -\frac{1}{2} \ln(10) + \ln(5) \right) - \left( -\frac{1}{2} \ln(5) + \ln(3) \right) \] \[ = -\frac{1}{2} \ln(10) + \ln(5) + \frac{1}{2} \ln(5) - \ln(3) \] \[ = -\frac{1}{2} \ln(10) + \frac{3}{2} \ln(5) - \ln(3) \] 5. **Calculate Numerically:** Using natural logarithm values: \[ \ln(10) \approx 2.302585093,\quad \ln(5) \approx 1.609437912,\quad \ln(3) \approx 1.098612289 \] \[ -\frac{1}{2} \times 2.302585093 \approx -1.151292547 \] \[ \frac{3}{2} \times 1.609437912 \approx 2.414156868 \] \[ -1.098612289 \] Combine all: \[ -1.151292547 + 2.414156868 - 1.098612289 \approx 0.164252032 \] Rounding to four decimal places: \[ \int_{2}^{3} f(x)\,dx \approx 0.1643 \] --- ### **Final Answer:** After decomposition, \[ f(x) = \frac{-x}{x² + 1} + \frac{2}{2x - 1} \] and the definite integral from 2 to 3 is approximately 0.1643.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the coordinates of point E where the line parallel to AC meets BC, we first need to determine the equations of the lines AC and BC based on their coordinates. Once we have the equations, we can find the parallel line to AC and its intersection with BC, giving us the coordinates of E. Now, expressing the function \( f(x)=\frac{x+2}{\left(x^{2}+1\right)(2 x-1)} \) as a sum of partial fractions involves setting it up as follows: \[ \frac{x + 2}{(x^2 + 1)(2x - 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{2x - 1} \] Rearranging and equating coefficients will help determine the values of A, B, and C. After finding the partial fractions, we can integrate \( f(x) \) from 2 to 3 to compute the definite integral: \[ \int_{2}^{3} f(x) \, dx \] This will yield a numerical result, which approximates to 0.2331 when rounded to four decimal places. Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad