Responder
After decomposing the function, \( f(x) = \frac{-x}{x^2 + 1} + \frac{2}{2x - 1} \). The definite integral from 2 to 3 is approximately 0.1643.
Solución
To solve the given problem, we'll perform the following steps:
1. **Decompose the function \( f(x) \) into partial fractions.**
2. **Evaluate the definite integral of \( f(x) \) from 2 to 3.**
Let's proceed step-by-step.
---
### 1. Partial Fraction Decomposition
Given the function:
\[
f(x) = \frac{x + 2}{(x^2 + 1)(2x - 1)}
\]
We aim to express \( f(x) \) as a sum of simpler fractions:
\[
\frac{x + 2}{(x^2 + 1)(2x - 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{2x - 1}
\]
**Step-by-Step Decomposition:**
1. **Set Up the Equation:**
\[
\frac{x + 2}{(x^2 + 1)(2x - 1)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{2x - 1}
\]
2. **Multiply Both Sides by \((x^2 + 1)(2x - 1)\) to Clear the Denominator:**
\[
x + 2 = (Ax + B)(2x - 1) + C(x^2 + 1)
\]
3. **Expand the Right Side:**
\[
x + 2 = 2Ax^2 - Ax + 2Bx - B + Cx^2 + C
\]
4. **Combine Like Terms:**
\[
x + 2 = (2A + C)x^2 + (-A + 2B)x + (-B + C)
\]
5. **Set Up a System of Equations by Equating Coefficients:**
\[
\begin{cases}
2A + C = 0 \quad &\text{(Coefficient of } x^2\text{)} \\
-A + 2B = 1 \quad &\text{(Coefficient of } x\text{)} \\
-B + C = 2 \quad &\text{(Constant term)}
\end{cases}
\]
6. **Solve the System:**
- From the first equation: \( C = -2A \)
- Substitute \( C \) into the third equation: \( -B - 2A = 2 \) → \( B + 2A = -2 \)
- Substitute \( B = -2 - 2A \) into the second equation: \( -A + 2(-2 - 2A) = 1 \) → \( -A - 4 - 4A = 1 \) → \( -5A = 5 \) → \( A = -1 \)
- Then, \( B = -2 - 2(-1) = 0 \)
- Finally, \( C = -2(-1) = 2 \)
7. **Write the Partial Fractions:**
\[
f(x) = \frac{-x}{x^2 + 1} + \frac{2}{2x - 1}
\]
---
### 2. Evaluating the Definite Integral
We now compute:
\[
\int_{2}^{3} f(x)\,dx = \int_{2}^{3} \left( \frac{-x}{x^2 + 1} + \frac{2}{2x - 1} \right) dx
\]
**Step-by-Step Integration:**
1. **Separate the Integral:**
\[
\int \frac{-x}{x^2 + 1} \, dx + \int \frac{2}{2x - 1} \, dx
\]
2. **Integrate Each Term Individually:**
- **First Integral:**
\[
\int \frac{-x}{x^2 + 1} \, dx
\]
Let \( u = x^2 + 1 \), then \( du = 2x\,dx \).
\[
\int \frac{-x}{x^2 + 1} \, dx = -\frac{1}{2} \ln|x^2 + 1| + C
\]
- **Second Integral:**
\[
\int \frac{2}{2x - 1} \, dx
\]
Let \( u = 2x - 1 \), then \( du = 2\,dx \), so \( dx = \frac{du}{2} \).
\[
\int \frac{2}{2x - 1} \, dx = \ln|2x - 1| + C
\]
3. **Combine the Results:**
\[
\int f(x)\,dx = -\frac{1}{2} \ln(x^2 + 1) + \ln(2x - 1) + C
\]
4. **Evaluate from 2 to 3:**
\[
\left[ -\frac{1}{2} \ln(x^2 + 1) + \ln(2x - 1) \right]_{2}^{3}
\]
\[
= \left( -\frac{1}{2} \ln(10) + \ln(5) \right) - \left( -\frac{1}{2} \ln(5) + \ln(3) \right)
\]
\[
= -\frac{1}{2} \ln(10) + \ln(5) + \frac{1}{2} \ln(5) - \ln(3)
\]
\[
= -\frac{1}{2} \ln(10) + \frac{3}{2} \ln(5) - \ln(3)
\]
5. **Calculate Numerically:**
Using natural logarithm values:
\[
\ln(10) \approx 2.302585093,\quad \ln(5) \approx 1.609437912,\quad \ln(3) \approx 1.098612289
\]
\[
-\frac{1}{2} \times 2.302585093 \approx -1.151292547
\]
\[
\frac{3}{2} \times 1.609437912 \approx 2.414156868
\]
\[
-1.098612289
\]
Combine all:
\[
-1.151292547 + 2.414156868 - 1.098612289 \approx 0.164252032
\]
Rounding to four decimal places:
\[
\int_{2}^{3} f(x)\,dx \approx 0.1643
\]
---
### **Final Answer:**
After decomposition,
\[ f(x) = \frac{-x}{x² + 1} + \frac{2}{2x - 1} \]
and the definite integral from 2 to 3 is approximately 0.1643.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución