Pregunta
upstudy study bank question image url

\( \int \frac { 1 } { \sqrt { 3 x } } d x \)

Ask by Harmon Griffin. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral of \( \frac{1}{\sqrt{3x}} \) with respect to \( x \) is \( \frac{2}{\sqrt{3}} \sqrt{x} + C \), where \( C \) is the constant of integration.

Solución

To evaluate the integral: \[ \int \frac{1}{\sqrt{3x}} \, dx \] **Step 1: Simplify the Integrand** First, factor out the constant from the square root: \[ \frac{1}{\sqrt{3x}} = \frac{1}{\sqrt{3} \cdot \sqrt{x}} = \frac{1}{\sqrt{3}} \cdot x^{-1/2} \] **Step 2: Integrate** Now, integrate the expression with respect to \( x \): \[ \int \frac{1}{\sqrt{3}} \cdot x^{-1/2} \, dx = \frac{1}{\sqrt{3}} \int x^{-1/2} \, dx \] Recall that: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{(for } n \neq -1\text{)} \] Applying this formula with \( n = -\frac{1}{2} \): \[ \frac{1}{\sqrt{3}} \cdot \left( \frac{x^{-1/2 + 1}}{-1/2 + 1} \right) + C = \frac{1}{\sqrt{3}} \cdot \left( \frac{x^{1/2}}{1/2} \right) + C = \frac{2}{\sqrt{3}} \sqrt{x} + C \] **Final Answer:** \[ \int \frac{1}{\sqrt{3x}} \, dx = \frac{2}{\sqrt{3}} \sqrt{x} + C \] where \( C \) is the constant of integration.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To evaluate the integral \( \int \frac{1}{\sqrt{3x}} \, dx \), we can start with a simple substitution. Notice that you can factor out the square root as follows: \[ \int \frac{1}{\sqrt{3x}} \, dx = \int \frac{1}{\sqrt{3} \sqrt{x}} \, dx = \frac{1}{\sqrt{3}} \int x^{-1/2} \, dx. \] Now, integrating \( x^{-1/2} \) yields: \[ = \frac{1}{\sqrt{3}} \cdot 2 x^{1/2} + C = \frac{2}{\sqrt{3}} \sqrt{x} + C, \] where \( C \) is the constant of integration. So the final result is: \[ \int \frac{1}{\sqrt{3x}} \, dx = \frac{2}{\sqrt{3}} \sqrt{x} + C. \] Taking a step back, integrals like this are part of a fundamental branch of calculus known as antiderivatives. They help us understand how functions behave over intervals, particularly in applications involving area and volume. It's always good to check your work after solving an integral. One common mistake is forgetting to include the constant \( C \) after integrating. Another tip is to be careful with substitutions and limits if you’re dealing with definite integrals; they can change the bounds of the integral differently than expected, especially with non-linear functions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad