Pregunta
upstudy study bank question image url

Works 2. (Yellow Paper) 1. Discuss the continuity of \( f \) at \( l a) x=-3,(b) \mid x=0 \) and \( |c| x=1 \) it discontinuous, give the type of discontinuity. 5 pointseach Let f be the function defines belbm. \[ f(x)=\left\{\begin{array}{ccc} \left|\frac{x^{2}+3 x}{x-3}\right| & \text { if } & x \leq 0, x \neq-3 \\ x+1 & \text { if } & 0
Ask by Ingram Watkins. in the Philippines
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

At \( x = -3 \), there's a removable discontinuity. At \( x = 0 \) and \( x = 1 \), there are jump discontinuities.

Solución

Let's analyze the continuity of the function \( f(x) \) at the points \( x = -3 \), \( x = 0 \), and \( x = 1 \). The function is defined as: \[ f(x)=\left\{\begin{array}{ccc} \left|\frac{x^{2}+3x}{x-3}\right| & \text{if} & x \leq 0, \, x \neq -3 \\ x + 1 & \text{if} & 0 < x < 1 \\ \sqrt{x} & \text{if} & x \geq 1 \end{array}\right. \] ### (a) Continuity at \( x = -3 \) **Function Behavior:** - For \( x \leq 0 \) and \( x \neq -3 \): \[ f(x) = \left|\frac{x^{2}+3x}{x-3}\right| \] - At \( x = -3 \): - The function \( f(x) \) is **not defined** because \( x = -3 \) is excluded from this piece. **Limits:** \[ \lim_{{x \to -3^-}} f(x) = \lim_{{x \to -3}} \left|\frac{(-3)^2 + 3(-3)}{-3 - 3}\right| = \left|\frac{9 - 9}{-6}\right| = 0 \] **Conclusion:** - **Discontinuity Type:** Removable Discontinuity - **Reason:** The limit exists as \( x \) approaches \(-3\) (which is 0), but \( f(-3) \) is not defined. If we define \( f(-3) = 0 \), the function becomes continuous at this point. ### (b) Continuity at \( x = 0 \) **Function Behavior:** - For \( x \leq 0 \): \[ f(0) = \left|\frac{0^2 + 3(0)}{0 - 3}\right| = 0 \] - For \( 0 < x < 1 \): \[ \lim_{{x \to 0^+}} f(x) = 0 + 1 = 1 \] **Limits:** \[ \lim_{{x \to 0^-}} f(x) = 0 \quad \text{and} \quad \lim_{{x \to 0^+}} f(x) = 1 \] **Conclusion:** - **Discontinuity Type:** Jump Discontinuity - **Reason:** The left-hand limit and right-hand limit at \( x = 0 \) are not equal. The function "jumps" from 0 to 1. ### (c) Continuity at \( x = 1 \) **Function Behavior:** - For \( 0 < x < 1 \): \[ \lim_{{x \to 1^-}} f(x) = 1 + 1 = 2 \] - For \( x \geq 1 \): \[ f(1) = \sqrt{1} = 1 \] **Limits:** \[ \lim_{{x \to 1^-}} f(x) = 2 \quad \text{and} \quad \lim_{{x \to 1^+}} f(x) = 1 \] **Conclusion:** - **Discontinuity Type:** Jump Discontinuity - **Reason:** The left-hand limit and right-hand limit at \( x = 1 \) are not equal. The function "jumps" from 2 to 1. --- ### Summary 1. **At \( x = -3 \):** Removable Discontinuity 2. **At \( x = 0 \):** Jump Discontinuity 3. **At \( x = 1 \):** Jump Discontinuity

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the continuity of the function \( f(x) \) at the points \( x = -3 \), \( x = 0 \), and \( x = 1 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches each specified point and compare it to the function's value at that point. 1. **At \( x = -3 \)**: The relevant piece of the function is \( f(x) = \left|\frac{x^{2}+3x}{x-3}\right| \) for \( x \leq 0 \). Calculating the limit: \[ f(-3) = \left|\frac{(-3)^2 + 3(-3)}{-3 - 3}\right| = \left|\frac{9 - 9}{-6}\right| = 0 \] The function is defined at this point, and since the limit as \( x \to -3 \) is also 0, \( f \) is continuous at \( x = -3 \). 2. **At \( x = 0 \)**: We analyze both sides: - As \( x \to 0^- \) (from the left), \( f(0^-) = \left|\frac{0^2 + 3 \cdot 0}{0 - 3}\right| = 0 \). - As \( x \to 0^+ \) (from the right), \( f(0^+) = 0 + 1 = 1 \). Since the left limit (0) and right limit (1) do not match, \( f(x) \) has a jump discontinuity at \( x = 0 \). 3. **At \( x = 1 \)**: The right limit as \( x \to 1^+ \) is \( f(1) = \sqrt{1} = 1\), and the left limit as \( x \to 1^- \) comes from the \( 0 < x < 1 \) part: \[ f(1^-) = 1 + 1 = 2. \] Again, since the limits do not match (1 from the right and 2 from the left), this indicates a jump discontinuity at \( x = 1 \). In summary: - At \( x = -3 \): Continuous. - At \( x = 0 \): Discontinuous (jump). - At \( x = 1 \): Discontinuous (jump). For a little extra fun: Make a graph of these intervals, and draw a line to represent the limits. It’s like visual storytelling—just without the need for a fancy plot twist! And remember, jump discontinuities are like that neighbor who always seems to skip over the formalities—instead of easing in, they just leap right in!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad