1. Given that \( 0 \leq x \leq 7 \) and \( 1 \leq y \leq 5 \), find the (i) largest possible value of \( x y \), (ii) least possible \( x-y \), (iii) least and greatest possible values of \( x^{2} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the given problems, we will analyze each part step by step. (i) To find the largest possible value of \( x y \) given the constraints \( 0 \leq x \leq 7 \) and \( 1 \leq y \leq 5 \), we multiply the maximum values of \( x \) and \( y \). The maximum is reached when \( x = 7 \) and \( y = 5 \): \[ xy = 7 \times 5 = 35. \] Thus, the largest possible value of \( xy \) is \( 35 \). (ii) For the least possible value of \( x - y \), we want to maximize \( y \) (to decrease the overall value of \( x - y\)) and minimize \( x \). The extreme values occur when \( x = 0 \) and \( y = 5 \): \[ x - y = 0 - 5 = -5. \] Thus, the least possible value of \( x - y \) is \(-5\). (iii) To find the least and greatest possible values of \( x^{2} \), we need to evaluate the values of \( x \) at the endpoints of the interval \( [0, 7] \). The least value occurs when \( x = 0 \): \[ x^{2} = 0^{2} = 0. \] The greatest value occurs when \( x = 7 \): \[ x^{2} = 7^{2} = 49. \] Therefore, the least possible value of \( x^{2} \) is \( 0 \) and the greatest possible value is \( 49 \). **Final Answers:** (i) 35 (ii) -5 (iii) Least: 0, Greatest: 49