Pregunta
upstudy study bank question image url

Solve the system below. Parameterize the solution set. \[ \begin{aligned}-x+2 y+5 z & =11 \\ -2 x+5 y+15 z & =25 \\ 3 x-3 y & =-24\end{aligned} \]

Ask by Wells Barber. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution set is: \[ \begin{aligned} x &= -5 - 5t, \\ y &= 3 - 5t, \\ z &= t, \end{aligned} \] where \( t \) is any real number.

Solución

Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}-x+2y+5z=11\\-2x+5y+15z=25\\3x-3y=-24\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=-11+2y+5z\\-2x+5y+15z=25\\3x-3y=-24\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\left\{ \begin{array}{l}-2\left(-11+2y+5z\right)+5y+15z=25\\3\left(-11+2y+5z\right)-3y=-24\end{array}\right.\) - step3: Simplify: \(\left\{ \begin{array}{l}22+y+5z=25\\-33+3y+15z=-24\end{array}\right.\) - step4: Solve the equation: \(\left\{ \begin{array}{l}y=3-5z\\-33+3y+15z=-24\end{array}\right.\) - step5: Substitute the value of \(y:\) \(-33+3\left(3-5z\right)+15z=-24\) - step6: Simplify: \(-24=-24\) - step7: Substitute the value of \(y:\) \(x=-11+2\left(3-5z\right)+5z\) - step8: Simplify: \(x=-5-5z\) - step9: Calculate: \(\left(x,y,z\right) = \left(-5-5z,3-5z,z\right),z \in \mathbb{R}\) - step10: Alternative Form: \(\textrm{Infinitely many solutions}\) The system of equations provided has infinitely many solutions. To parameterize the solution set, we can express the variables in terms of a free variable. Let's denote \( z = t \) (where \( t \) is a parameter). We can then express \( x \) and \( y \) in terms of \( t \). 1. From the first equation: \[ -x + 2y + 5t = 11 \implies x = 2y + 5t - 11 \] 2. Substitute \( x \) into the second equation: \[ -2(2y + 5t - 11) + 5y + 15t = 25 \] Simplifying this: \[ -4y - 10t + 22 + 5y + 15t = 25 \] \[ y + 5t + 22 = 25 \implies y = 3 - 5t \] 3. Now substitute \( y \) back into the expression for \( x \): \[ x = 2(3 - 5t) + 5t - 11 \] \[ x = 6 - 10t + 5t - 11 = -5 - 5t \] Thus, the parameterized solution set can be expressed as: \[ \begin{aligned} x &= -5 - 5t, \\ y &= 3 - 5t, \\ z &= t, \end{aligned} \] where \( t \) is any real number.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the system of equations, we start by rewriting the system for clarity: 1. \(-x + 2y + 5z = 11\) \quad (Equation 1) 2. \(-2x + 5y + 15z = 25\) \quad (Equation 2) 3. \(3x - 3y = -24\) \quad (Equation 3) Now, let's simplify Equation (3): \[ 3x - 3y = -24 \implies x - y = -8 \implies x = y - 8. \quad (Equation 4) \] Next, we substitute Equation (4) \(x = y - 8\) into Equations (1) and (2). Substituting into Equation (1): \[ - (y - 8) + 2y + 5z = 11 \] \[ - y + 8 + 2y + 5z = 11 \implies y + 5z + 8 = 11 \implies y + 5z = 3. \quad (Equation 5) \] Substituting into Equation (2): \[ -2(y - 8) + 5y + 15z = 25 \] \[ -2y + 16 + 5y + 15z = 25 \implies 3y + 15z + 16 = 25 \implies 3y + 15z = 9. \] Dividing everything by 3 gives: \[ y + 5z = 3. \quad (Equation 6) \] Now we have two equations, Equation (5) and Equation (6), that are identical. This tells us that \(y + 5z = 3\) can be our main equation. From Equation (5), we can express \(y\) in terms of \(z\): \[ y = 3 - 5z. \] Now substituting back into Equation (4) to find \(x\): \[ x = (3 - 5z) - 8 = -5z - 5. \] Now, our variable \(z\) can be free. Let’s parameterize the solutions in terms of \(z\): - Let \(z = t\), where \(t\) is any real number. Then, we can write: \[ \begin{aligned} x &= -5t - 5, \\ y &= 3 - 5t, \\ z &= t. \end{aligned} \] Therefore, the parameterized solution set is: \[ (x, y, z) = (-5t - 5, 3 - 5t, t) \quad \text{for } t \in \mathbb{R}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad