Pregunta
upstudy study bank question image url

Find an equation of the circle that has center \( (5,-2) \) and passes through \( (1,-6) \).

Ask by Chambers Long. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the circle is \((x - 5)^2 + (y + 2)^2 = 32\).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To find the equation of the circle, we'll start with the standard form of a circle's equation: \[ (x - h)^2 + (y - k)^2 = r^2 \] where \( (h, k) \) is the center of the circle and \( r \) is the radius. In your case, the center is \( (5, -2) \), so \( h = 5 \) and \( k = -2 \). Next, we need to find the radius \( r \). We can calculate the radius by finding the distance between the center of the circle and the point \( (1, -6) \). The distance \( r \) can be found using the distance formula: \[ r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Substituting the coordinates: \[ r = \sqrt{(1 - 5)^2 + (-6 + 2)^2} = \sqrt{(-4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \] Now we can substitute \( h \), \( k \), and \( r \) back into the circle equation: \[ (x - 5)^2 + (y + 2)^2 = (4\sqrt{2})^2 \] Calculating \( (4\sqrt{2})^2 \): \[ (4\sqrt{2})^2 = 16 \cdot 2 = 32 \] Finally, the equation of the circle is: \[ (x - 5)^2 + (y + 2)^2 = 32 \]

Latest Geometry Questions

2. What do you call the underlined digit in this mathematical sentence, \( 25 \% \) of \( S=2 \) ? a. base c. 3.30 b. rate 3. What is asked in this mathematical problem, 32 is what percent of 80 ? a.) base b, rate c. percentage 4. Two of the 50 pieces of tomatoes in a basket are rotten. This is \( 4 \% \) of all the tomatoes in the backet. Which is the rate? a. 2 c. 48 d. 50 5. \( 25 \% \) of what number is 12 ? b. \( 4 \% \) b. 2.083 c. 3 d. 48 6. Marco, a basketball player, usualiy scores \( 80 \% \) of his field shots. If he attempted 40 field shots duning the game, how many did he score? a. 0.02 b. 2 c. 8 d. 32 7. James grade in Math increased by \( 15 \% \). If his last grade is 80 , what is his grade now? a. 82 b. 85 c. 88 d. 92 8. There are 45 pupils in a class. 40 pupils are present. What percent of the class are absent? a. \( 8 \% \) b. \( 11 \% \) c. \( 89 \% \) d. \( 90 \% \) 9. What do you call the endpoints where the sides of a polygon meet? a angle b. line segmentsc. vertices d. corner 10. What do you call a polygon with twelve sides? a. heptagon b. nonagon c. nodecagon 11. Polygons are classified according to \( \qquad \) a. line segments b. vertices c. corners d. number of sides 12. What do you call the polygons with equal sides? a. regular polygons b. congruent polygons b. irregular polygons 13. What do you call the polygons with the same size and shape? regular polygons congruent polygons b. irregular polygons d. similar polygons 14. Which of the following statements DO NOT describe similar polygons? a. They have exactly the same shape. b. The corresponding interior angles are the same. c. The corresponding sides of each polygon are in the same proportion.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad