Pregunta
upstudy study bank question image url

ce Test \( 1(4.2,4.5-4.9)< \) Question 1, *4.7.57-Setup \& Solve rrade \[ \lim _{x \rightarrow \frac{\pi}{2}_{2}^{+}}\left(\frac{\pi}{2}-x\right) \sec x \]

Ask by King Hammond. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The limit is 1.

Solución

To evaluate the limit: \[ \lim _{x \rightarrow \frac{\pi}{2}^{+}}\left(\frac{\pi}{2}-x\right) \sec x \] **Step 1: Understand the Behavior Near \(\frac{\pi}{2}\)** - **Approaching \(\frac{\pi}{2}\) from the Right (\(x \to \frac{\pi}{2}^{+}\)):** - \(x > \frac{\pi}{2}\), so \(\frac{\pi}{2} - x\) is negative and approaching 0. - \(\sec x = \frac{1}{\cos x}\). As \(x\) approaches \(\frac{\pi}{2}\), \(\cos x\) approaches 0. - Specifically, from the right, \(\cos x\) approaches 0 **from the negative side** (since cosine is negative just after \(\frac{\pi}{2}\)), making \(\sec x\) approach \(-\infty\). **Step 2: Substitute and Simplify** Let’s perform a substitution to simplify the limit: - Let \(h = x - \frac{\pi}{2}\), where \(h \to 0^{+}\) as \(x \to \frac{\pi}{2}^{+}\). Rewriting the expression in terms of \(h\): \[ \frac{\pi}{2} - x = -h \] \[ \cos x = \cos\left(\frac{\pi}{2} + h\right) = -\sin h \] \[ \sec x = \frac{1}{\cos x} = \frac{1}{-\sin h} = -\csc h \] Now, the original limit becomes: \[ \lim_{h \to 0^{+}} (-h) \cdot (-\csc h) = \lim_{h \to 0^{+}} \frac{h}{\sin h} \] **Step 3: Evaluate the Simplified Limit** We know from standard calculus limits that: \[ \lim_{h \to 0} \frac{h}{\sin h} = 1 \] **Conclusion** Therefore, the limit is: \[ \lim _{x \rightarrow \frac{\pi}{2}^{+}}\left(\frac{\pi}{2}-x\right) \sec x = 1 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle the limit \( \lim_{x \rightarrow \frac{\pi}{2}^+} \left(\frac{\pi}{2} - x\right) \sec x \), we first need to understand what happens to each component as \( x \) approaches \( \frac{\pi}{2} \) from the right. As \( x \to \frac{\pi}{2}^+ \), \( \frac{\pi}{2} - x \) approaches \( 0 \) and \( \sec x \) (which is \( \frac{1}{\cos x} \)) approaches \( -\infty \) since \( \cos x \) approaches \( 0 \) from the negative side. So, our limit is of the form \( 0 \cdot (-\infty) \), which requires further analysis. To find the limit, we can rewrite it as: \[ \lim_{x \rightarrow \frac{\pi}{2}^+} \frac{\frac{\pi}{2} - x}{\cos x} \] This change transforms our indeterminate form into the form \( \frac{0}{0} \), allowing us to apply L'Hôpital's Rule. Taking the derivative of the numerator and the denominator gives us: \[ \lim_{x \rightarrow \frac{\pi}{2}^+} \frac{-1}{-\sin x} \] As \( x \to \frac{\pi}{2} \), \( \sin x \) approaches \( 1 \). Therefore, the limit simplifies to: \[ \frac{-1}{-1} = 1 \] So, the final answer is: \[ \lim _{x \rightarrow \frac{\pi}{2}^+}\left(\frac{\pi}{2}-x\right) \sec x = 1 \]

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad