Pregunta
Solve for \( b \) \( L=\frac{a-b}{5} \)
Ask by Parry Bryant. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( b = a - 5L \)
Solución
To solve for \( b \) in the equation:
\[
L = \frac{a - b}{5}
\]
follow these steps:
1. **Eliminate the denominator** by multiplying both sides of the equation by 5:
\[
5L = a - b
\]
2. **Isolate \( b \)** by moving \( a \) to the other side. Subtract \( a \) from both sides:
\[
5L - a = -b
\]
3. **Solve for \( b \)** by multiplying both sides by -1:
\[
b = a - 5L
\]
**Final Solution:**
\[
b = a - 5L
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve for \( b \) in the equation \( L = \frac{a-b}{5} \), first eliminate the fraction by multiplying both sides by 5: \[ 5L = a - b. \] Next, rearrange this equation to isolate \( b \): \[ b = a - 5L. \] So, we have \( b \) expressed in terms of \( a \) and \( L \) as \( b = a - 5L \). Now you have a clear formula for calculating \( b \). Enjoy solving!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium