Responder
Combine like terms to get \( 9x^{2} + 13x + 3 \).
Solución
Certainly! Let's use **algebra tiles** to add the two polynomials:
\[
\left(x^{2} + 5x\right) + \left(8x^{2} + 8x + 3\right)
\]
**Algebra Tiles Overview:**
- **\( x^2 \) tile**: Represents the quadratic term.
- **\( x \) tile**: Represents the linear term.
- **\( 1 \) tile**: Represents the constant term.
**Step 1: Represent Each Polynomial with Algebra Tiles**
1. **First Polynomial: \( x^{2} + 5x \)**
- **\( x^2 \) tiles**: 1
- **\( x \) tiles**: 5
- **\( 1 \) tiles**: 0
![First Polynomial Tiles](https://i.imgur.com/1P9Yb1K.png)
2. **Second Polynomial: \( 8x^{2} + 8x + 3 \)**
- **\( x^2 \) tiles**: 8
- **\( x \) tiles**: 8
- **\( 1 \) tiles**: 3
![Second Polynomial Tiles](https://i.imgur.com/YkMFWZD.png)
**Step 2: Combine the Tiles**
Add the corresponding tiles from both polynomials:
- **Total \( x^2 \) tiles**: \(1 + 8 = 9\)
- **Total \( x \) tiles**: \(5 + 8 = 13\)
- **Total \( 1 \) tiles**: \(0 + 3 = 3\)
![Combined Tiles](https://i.imgur.com/4yQqV9s.png)
**Step 3: Write the Resulting Polynomial**
Combine the totals to form the final polynomial:
\[
9x^{2} + 13x + 3
\]
**Final Answer:**
\[
(x^{2} + 5x) + (8x^{2} + 8x + 3) = 9x^{2} + 13x + 3
\]
**Visualization Summary:**
1. **First Polynomial:**
- \( x^2 \) tile × 1
- \( x \) tile × 5
2. **Second Polynomial:**
- \( x^2 \) tile × 8
- \( x \) tile × 8
- \( 1 \) tile × 3
3. **Combined:**
- \( x^2 \) tile × 9
- \( x \) tile × 13
- \( 1 \) tile × 3
By organizing and combining the algebra tiles, we systematically add like terms to arrive at the simplified polynomial.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución