Pregunta
upstudy study bank question image url

TOPIC: Algebra Sub-topic: Solve Quadratic equations by factorisation Solve for \( x \) : One a) \( 3 x^{2}-6 x=0 \) b) \( x^{2}-81=0 \) c) \( x^{2}-x=12 \) d) \( x(x-9)=-14 \) e) \( 3 x^{\frac{2}{3}}-7 x^{\frac{1}{3}}+2=0 \) f) \( x-3 x^{\frac{1}{2}}-4=0 \)

Ask by Johnston Carter. in South Africa
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions:** - **a)** \( x = 0 \) and \( x = 2 \) - **b)** \( x = 9 \) and \( x = -9 \) - **c)** \( x = 4 \) and \( x = -3 \) - **d)** \( x = 7 \) and \( x = 2 \) - **e)** \( x = \frac{1}{27} \) and \( x = 8 \) - **f)** \( x = 16 \)

Solución

Sure! Let's solve each of the quadratic equations by factorization step by step. --- ### **a) \( 3x^{2} - 6x = 0 \)** **Step 1: Factor out the greatest common factor (GCF).** The GCF of \( 3x^{2} \) and \( -6x \) is \( 3x \). \[ 3x^{2} - 6x = 3x(x - 2) = 0 \] **Step 2: Apply the Zero Product Property.** If \( AB = 0 \), then either \( A = 0 \) or \( B = 0 \). \[ 3x = 0 \quad \text{or} \quad x - 2 = 0 \] **Step 3: Solve for \( x \).** \[ x = 0 \quad \text{or} \quad x = 2 \] **Solution:** \( x = 0 \) and \( x = 2 \) --- ### **b) \( x^{2} - 81 = 0 \)** **Step 1: Recognize the difference of squares.** \[ x^{2} - 81 = x^{2} - 9^{2} = (x - 9)(x + 9) = 0 \] **Step 2: Apply the Zero Product Property.** \[ x - 9 = 0 \quad \text{or} \quad x + 9 = 0 \] **Step 3: Solve for \( x \).** \[ x = 9 \quad \text{or} \quad x = -9 \] **Solution:** \( x = 9 \) and \( x = -9 \) --- ### **c) \( x^{2} - x = 12 \)** **Step 1: Bring all terms to one side to set the equation to zero.** \[ x^{2} - x - 12 = 0 \] **Step 2: Factor the quadratic equation.** We need two numbers that multiply to \(-12\) and add to \(-1\). \[ (x - 4)(x + 3) = 0 \] **Step 3: Apply the Zero Product Property.** \[ x - 4 = 0 \quad \text{or} \quad x + 3 = 0 \] **Step 4: Solve for \( x \).** \[ x = 4 \quad \text{or} \quad x = -3 \] **Solution:** \( x = 4 \) and \( x = -3 \) --- ### **d) \( x(x - 9) = -14 \)** **Step 1: Expand and bring all terms to one side.** \[ x^{2} - 9x + 14 = 0 \] **Step 2: Factor the quadratic equation.** We need two numbers that multiply to \(+14\) and add to \(-9\). \[ (x - 7)(x - 2) = 0 \] **Step 3: Apply the Zero Product Property.** \[ x - 7 = 0 \quad \text{or} \quad x - 2 = 0 \] **Step 4: Solve for \( x \).** \[ x = 7 \quad \text{or} \quad x = 2 \] **Solution:** \( x = 7 \) and \( x = 2 \) --- ### **e) \( 3x^{\frac{2}{3}} - 7x^{\frac{1}{3}} + 2 = 0 \)** **Step 1: Make a substitution to simplify the equation.** Let \( y = x^{\frac{1}{3}} \). Then \( y^{2} = x^{\frac{2}{3}} \). Substitute into the equation: \[ 3y^{2} - 7y + 2 = 0 \] **Step 2: Factor the quadratic in \( y \).** We need two numbers that multiply to \(3 \times 2 = 6\) and add to \(-7\). \[ 3y^{2} - 6y - y + 2 = 0 \\ 3y(y - 2) -1(y - 2) = (3y - 1)(y - 2) = 0 \] **Step 3: Apply the Zero Product Property.** \[ 3y - 1 = 0 \quad \text{or} \quad y - 2 = 0 \] **Step 4: Solve for \( y \).** \[ y = \frac{1}{3} \quad \text{or} \quad y = 2 \] **Step 5: Substitute back \( y = x^{\frac{1}{3}} \) and solve for \( x \).** - For \( y = \frac{1}{3} \): \[ x^{\frac{1}{3}} = \frac{1}{3} \\ x = \left( \frac{1}{3} \right)^{3} = \frac{1}{27} \] - For \( y = 2 \): \[ x^{\frac{1}{3}} = 2 \\ x = 2^{3} = 8 \] **Solution:** \( x = \frac{1}{27} \) and \( x = 8 \) --- ### **f) \( x - 3x^{\frac{1}{2}} - 4 = 0 \)** **Step 1: Make a substitution to simplify the equation.** Let \( y = x^{\frac{1}{2}} \) (which means \( y = \sqrt{x} \)). Then \( y^{2} = x \). Substitute into the equation: \[ y^{2} - 3y - 4 = 0 \] **Step 2: Factor the quadratic in \( y \).** We need two numbers that multiply to \(-4\) and add to \(-3\). \[ (y - 4)(y + 1) = 0 \] **Step 3: Apply the Zero Product Property.** \[ y - 4 = 0 \quad \text{or} \quad y + 1 = 0 \] **Step 4: Solve for \( y \).** \[ y = 4 \quad \text{or} \quad y = -1 \] **Step 5: Substitute back \( y = \sqrt{x} \) and solve for \( x \).** - For \( y = 4 \): \[ \sqrt{x} = 4 \\ x = 16 \] - For \( y = -1 \): \[ \sqrt{x} = -1 \] Since \( \sqrt{x} \) represents the principal (non-negative) square root, \( \sqrt{x} = -1 \) has no real solution. **Solution:** \( x = 16 \) --- **Summary of Solutions:** - **a)** \( x = 0 \) and \( x = 2 \) - **b)** \( x = 9 \) and \( x = -9 \) - **c)** \( x = 4 \) and \( x = -3 \) - **d)** \( x = 7 \) and \( x = 2 \) - **e)** \( x = \frac{1}{27} \) and \( x = 8 \) - **f)** \( x = 16 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve these quadratic equations by factorization, we'll start by rewriting each equation in standard form (if necessary) and then factor them to find the roots. Here’s the solution for each equation: a) \( 3x^{2} - 6x = 0 \) Factor out \( 3x \): \( 3x(x - 2) = 0 \) So, \( x = 0 \) or \( x = 2 \). b) \( x^{2} - 81 = 0 \) This is a difference of squares: \( (x - 9)(x + 9) = 0 \) So, \( x = 9 \) or \( x = -9 \). c) \( x^{2} - x - 12 = 0 \) Factor the quadratic: \( (x - 4)(x + 3) = 0 \) So, \( x = 4 \) or \( x = -3 \). d) \( x(x - 9) = -14 \) → move -14 to the left side to form a standard quadratic: \( x^2 - 9x + 14 = 0 \) Factoring gives: \( (x - 7)(x - 2) = 0 \) So, \( x = 7 \) or \( x = 2 \). e) Let \( y = x^{\frac{1}{3}} \): Then the equation becomes \( 3y^{2}-7y+2=0 \). Factoring gives: \( (3y - 1)(y - 2) = 0 \) So, \( y = \frac{1}{3} \) or \( y = 2 \), which implies \( x = \left(\frac{1}{3}\right)^{3} \) or \( x = 2^{3} \), leading to \( x = \frac{1}{27} \) or \( x = 8 \). f) \( x - 3\sqrt{x} - 4 = 0 \) → let \( y = \sqrt{x} \), thus \( y^{2} - 3y - 4 = 0 \). Factoring gives: \( (y - 4)(y + 1) = 0 \) So, \( y = 4 \) or \( y = -1 \). Since \( y = \sqrt{x} \), only \( y = 4 \) is valid, giving \( x = 16 \). Now, let's have fun with this: Knowing what we just covered, let’s celebrate the beauty of quadratics! Did you know that the word "quadratic" comes from the Latin word "quadratus," which means "square"? It's all about those x² terms, rounding things up nicely! Quadratics aren’t just academic; they're utilized in physics, engineering, and even finance! Need to calculate projectile motion or find the best return on investment? Quadratic equations are your pals!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad