Pregunta
upstudy study bank question image url

8. Kaplee drove her scooter at an average speed of 15 miles per hour and was 5 miles ahead of Sophia. Sophia drove her scooter at an average speed of 20 miles per hour. This situation can be represented with the system \( y=15 x+5 \) and \( y=20 x \), where \( x \) is the nurmber of hours and is the number of miles from the starting point. After how many hours are kaylee and sophia the same distance from the starting point?

Ask by Lynch Pierce. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 1 hour, Kaylee and Sophia are the same distance from the starting point.

Solución

To determine after how many hours Kaylee and Sophia will be the same distance from the starting point, let's analyze the given information using the provided equations. ### Given: - **Kaylee's Distance:** \( y = 15x + 5 \) - *15 miles per hour* is her speed. - She has a *5-mile head start*. - **Sophia's Distance:** \( y = 20x \) - *20 miles per hour* is her speed. Here, \( x \) represents the number of hours, and \( y \) represents the distance from the starting point. ### Setting the Equations Equal: To find when both are the same distance from the start, set Kaylee's distance equal to Sophia's distance: \[ 15x + 5 = 20x \] ### Solving for \( x \): 1. **Subtract \( 15x \) from both sides:** \[ 5 = 5x \] 2. **Divide both sides by 5:** \[ x = 1 \] ### Conclusion: After **1 hour**, Kaylee and Sophia will be at the same distance from the starting point. **Answer:** After 1 hour, Kaylee and Sophia are the same distance from the starting point.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find when Kaylee and Sophia are at the same distance from the starting point, we can set the two equations equal to each other: \[ 15x + 5 = 20x \] Solving for \( x \): 1. Subtract \( 15x \) from both sides: \[ 5 = 5x \] 2. Divide by 5: \[ x = 1 \] So, they will be the same distance from the starting point after 1 hour. In a fun twist, picture them racing through a park, with Kaylee zooming ahead and Sophia just a little behind but gaining speed—who knew math could be a race? If you're interested in real-world scenarios, think about how GPS systems use similar equations to determine travel times and distances. They constantly compute your speed and distance traveled to give updates on when you'll arrive at your destination.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad