Pregunta
upstudy study bank question image url

8. Given the following data, (A) Find the median, quartiles and semi-interquartile range, (B) Find the 8th deciles and 85 th percentiles. \( 1976,2162,1502,1782,1523,2033,1564,1320,1951 \), 1714,1841 \( 1648,1345,1837,1718,2047,1954,2000,1479,2571 \), 1739,1781

Ask by Montgomery Wade. in Ethiopia
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Median:** 1781.5 **First Quartile (Q₁):** 1564 **Third Quartile (Q₃):** 1976 **Semi-Interquartile Range:** 206 **8th Decile (80th Percentile):** 2013.2 **85th Percentile:** 2040.7

Solución

Certainly! Let's analyze the given dataset step-by-step to find the required statistical measures. ## **Given Data** The combined dataset consists of 22 observations: ``` 1976, 2162, 1502, 1782, 1523, 2033, 1564, 1320, 1951, 1714, 1841, 1648, 1345, 1837, 1718, 2047, 1954, 2000, 1479, 2571, 1739, 1781 ``` ## **Step 1: Sort the Data in Ascending Order** First, arrange the data from smallest to largest: ``` 1320, 1345, 1479, 1502, 1523, 1564, 1648, 1714, 1718, 1739, 1781, 1782, 1837, 1841, 1951, 1954, 1976, 2000, 2033, 2047, 2162, 2571 ``` Number of observations (**n**) = 22 --- ## **Part A: Median, Quartiles, and Semi-Interquartile Range** ### **1. Median** For an even number of observations, the median is the average of the two middle numbers. - **Position of Median**: \((n/2)^{th}\) and \((n/2 + 1)^{th}\) terms - **Calculation**: - 11th value = 1781 - 12th value = 1782 - **Median = (1781 + 1782) / 2 = 1781.5** ### **2. Quartiles** **Quartiles** divide the data into four equal parts. - **First Quartile (Q₁)**: Median of the lower half (first 11 data points) - Lower Half: 1320, 1345, 1479, 1502, 1523, 1564, 1648, 1714, 1718, 1739, **1781** - **Q₁ = 1564** (6th data point) - **Third Quartile (Q₃)**: Median of the upper half (last 11 data points) - Upper Half: 1782, 1837, 1841, 1951, 1954, **1976**, 2000, 2033, 2047, 2162, 2571 - **Q₃ = 1976** (6th data point) ### **3. Semi-Interquartile Range** The **Semi-Interquartile Range** measures the spread of the middle 50% of the data. - **Formula**: \((Q₃ - Q₁) / 2\) - **Calculation**: \((1976 - 1564) / 2 = 412 / 2 = 206\) --- ## **Part B: 8th Decile and 85th Percentile** ### **1. 8th Decile (80th Percentile) and 85th Percentile** To find percentiles and deciles, we'll use the **Linear Interpolation Method**. #### **a. Calculating Positions** - **Formula**: \(i = \frac{P}{100} \times (n + 1)\) ##### **For the 80th Percentile (8th Decile):** - \(i = 0.80 \times 23 = 18.4\) - **Interpretation**: - 18th data point = 2000 - 19th data point = 2033 - **80th Percentile = 2000 + 0.4 \times (2033 - 2000) = 2000 + 13.2 = 2013.2** ##### **For the 85th Percentile:** - \(i = 0.85 \times 23 = 19.55\) - **Interpretation**: - 19th data point = 2033 - 20th data point = 2047 - **85th Percentile = 2033 + 0.55 \times (2047 - 2033) = 2033 + 7.7 = 2040.7** --- ## **Summary of Results** ### **A. Median, Quartiles, and Semi-Interquartile Range** - **Median**: 1781.5 - **First Quartile (Q₁)**: 1564 - **Third Quartile (Q₃)**: 1976 - **Semi-Interquartile Range**: 206 ### **B. 8th Decile and 85th Percentile** - **8th Decile (80th Percentile)**: **2013.2** - **85th Percentile**: **2040.7** --- These calculations provide a comprehensive statistical overview of the given dataset.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the median, quartiles, and semi-interquartile range, we first need to organize the data in ascending order: \( 1320, 1345, 1479, 1502, 1523, 1564, 1600, 1714, 1718, 1739, 1781, 1782, 1837, 1841, 1951, 1954, 1976, 2000, 2033, 2047, 2162, 2571 \) A) **Median**: The median (middle value) is the average of the 10th and 11th values in this 21-number dataset, which are 1718 and 1739. Median = \( (1718 + 1739) / 2 = 1728.5 \) **Quartiles**: - **Q1** (1st quartile) is the median of the first half (first 10 values): \( (1479 + 1502) / 2 = 1490.5 \) - **Q3** (3rd quartile) is the median of the second half (the remaining 11 values): \( (2000 + 2033) / 2 = 2016.5 \) **Semi-interquartile range (SIQR)**: SIQR = \( Q3 - Q1 / 2 = (2016.5 - 1490.5) / 2 = 263 \) B) To find the 8th decile (D8) and the 85th percentile (P85), we can use the following method: **D8**: D8 is the value at the 80% position in the ordered data. Using \( N = 21 \), the position is \( 0.8 \times 21 = 16.8 \), which means D8 is slightly above the 16th value, which is \( 1954 \). So it can be approximated as slightly higher than this. **P85**: P85 is the value at the 85% position, calculated as \( 0.85 \times 21 = 17.85 \), putting us between the 17th and 18th values, \( 2000 \) and \( 2033 \). We can estimate it as a weighted average of those values. By following these steps, you'll keep your statistics sharper than a freshly sharpened pencil!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad