Pregunta
upstudy study bank question image url

Suppose Miguel places \( \$ 7000 \) in an account that pays \( 2 \% \) interest compounded each year. Assume that no withdrawals are made from the account. Follow the instructions below. Do not do any rounding. (a) Find the amount in the account at the end of 1 year. \( \$ \square \) (b) Find the amount in the account at the end of 2 years. \( \$ \square \)

Ask by Greene Franklin. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

At the end of 1 year, the amount is \$7140. At the end of 2 years, the amount is \$7282.80.

Solución

Let's calculate the amount in Miguel's account at the end of each year using the compound interest formula: \[ A = P \times (1 + r)^n \] where: - \( A \) is the amount in the account after \( n \) years, - \( P \) is the principal amount (\$7000), - \( r \) is the annual interest rate (2\% or 0.02), - \( n \) is the number of years. ### (a) Amount at the End of 1 Year \[ A = 7000 \times (1 + 0.02)^1 = 7000 \times 1.02 = 7140 \] \[ \$ \boxed{7140} \] ### (b) Amount at the End of 2 Years \[ A = 7000 \times (1 + 0.02)^2 = 7000 \times 1.0404 = 7282.8 \] \[ \$ \boxed{7282.8} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the amount in the account at the end of each year with compounded interest, we can use the formula: \[ A = P(1 + r)^n \] where: - \( A \) is the amount in the account after n years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (in decimal), - \( n \) is the number of years the money is invested for. Given \( P = 7000 \) and \( r = 0.02 \): (a) For the end of 1 year (n = 1): \[ A = 7000(1 + 0.02)^1 = 7000(1.02) = 7140 \] So, the amount in the account at the end of 1 year is \( \$ 7140 \). (b) For the end of 2 years (n = 2): \[ A = 7000(1 + 0.02)^2 = 7000(1.02)^2 = 7000(1.0404) = 7282.80 \] Therefore, the amount in the account at the end of 2 years is \( \$ 7282.80 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad