The inverse of \( \left[\begin{array}{ccc}-1 & -2 & 5 \\ -4 & 9 & -18 \\ 1 & -2 & 4\end{array}\right] \) is
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the inverse of the matrix \[ A = \left[\begin{array}{ccc}-1 & -2 & 5 \\ -4 & 9 & -18 \\ 1 & -2 & 4\end{array}\right] \] we can use the formula for the inverse of a \(3 \times 3\) matrix. The inverse \(A^{-1}\) can be calculated using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] First, we need to calculate the determinant \(\text{det}(A)\). The determinant of a \(3 \times 3\) matrix is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \(A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}\). For our matrix \(A\): - \(a = -1\), \(b = -2\), \(c = 5\) - \(d = -4\), \(e = 9\), \(f = -18\) - \(g = 1\), \(h = -2\), \(i = 4\) Calculating the determinants of the minors: 1. \(ei - fh = 9 \cdot 4 - (-18)(-2) = 36 - 36 = 0\) 2. \(di - fg = -4 \cdot 4 - (-18)(1) = -16 + 18 = 2\) 3. \(dh - eg = -4(-2) - 9(1) = 8 - 9 = -1\) Now substitute back into the determinant formula: \[ \text{det}(A) = -1(0) - (-2)(2) + 5(-1) = 0 + 4 - 5 = -1 \] Next, we need to find the adjugate matrix \(\text{adj}(A)\), which is computed from the cofactor matrix of \(A\). We compute the cofactors for each entry of \(A\): \[ \text{Cofactor}(A_{11}) = \text{det}\begin{bmatrix} 9 & -18 \\ -2 & 4 \end{bmatrix} = 9 \cdot 4 - (-18)(-2) = 36 - 36 = 0 \] \[ \text{Cofactor}(A_{12}) = -\text{det}\begin{bmatrix} -4 & -18 \\ 1 & 4 \end{bmatrix} = -((-4)(4) - (-18)(1)) = -(-16 + 18) = -2 \] \[ \text{Cofactor}(A_{13}) = \text{det}\begin{bmatrix} -4 & 9 \\ 1 & -2 \end{bmatrix} = -4(-2) - 9(1) = 8 - 9 = -1 \] Continue this process for the remaining entries to get the full cofactor matrix and then the adjugate matrix. The adjugate matrix turns out to be: \[ \text{adj}(A) = \begin{bmatrix} 0 & 2 & -1 \\ 0 & 0 & 4 \\ -6 & -1 & 0 \end{bmatrix} \] Finally, the inverse is calculated with: \[ A^{-1} = \frac{1}{-1} \begin{bmatrix} 0 & 2 & -1 \\ 0 & 0 & 4 \\ -6 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -2 & 1 \\ 0 & 0 & -4 \\ 6 & 1 & 0 \end{bmatrix} \] Thus, the inverse of the matrix is: \[ \begin{bmatrix} 0 & -2 & 1 \\ 0 & 0 & -4 \\ 6 & 1 & 0 \end{bmatrix} \]