Pregunta
upstudy study bank question image url

\begin{tabular}{l} EXERCISE 15 \\ Olve for \( x \) : \\ \( \begin{array}{l}\sqrt{x+2}=4 \\ 3 \sqrt{x}=2 \sqrt{3} \\ \sqrt{x^{2}+7}-4=0 \\ \sqrt{x-2}=4-x \\ \sqrt{3 x+13}-1=x \\ \sqrt{4-3 x}=4-3 x\end{array} \) \\ \hline\end{tabular}

Ask by Bush Hill. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Solutions for the equations are: 1. \( x = 14 \) 2. \( x = \frac{4}{3} \) 3. \( x = 3 \) and \( x = -3 \) 4. \( x = 3 \) 5. \( x = 4 \) 6. \( x = \frac{4}{3} \) and \( x = 1 \)

Solución

Sure, let's solve each of the given equations for \( x \) step by step. --- ### 1. \(\sqrt{x + 2} = 4\) **Step 1:** Square both sides to eliminate the square root. \[ (\sqrt{x + 2})^2 = 4^2 \\ x + 2 = 16 \] **Step 2:** Solve for \( x \). \[ x = 16 - 2 \\ x = 14 \] **Solution:** \( x = 14 \) --- ### 2. \(3 \sqrt{x} = 2 \sqrt{3}\) **Step 1:** Isolate the square root. \[ \sqrt{x} = \frac{2 \sqrt{3}}{3} \] **Step 2:** Square both sides to eliminate the square root. \[ (\sqrt{x})^2 = \left(\frac{2 \sqrt{3}}{3}\right)^2 \\ x = \frac{4 \times 3}{9} \\ x = \frac{12}{9} \\ x = \frac{4}{3} \] **Solution:** \( x = \frac{4}{3} \) --- ### 3. \(\sqrt{x^{2} + 7} - 4 = 0\) **Step 1:** Isolate the square root. \[ \sqrt{x^2 + 7} = 4 \] **Step 2:** Square both sides to eliminate the square root. \[ (\sqrt{x^2 + 7})^2 = 4^2 \\ x^2 + 7 = 16 \] **Step 3:** Solve for \( x^2 \). \[ x^2 = 16 - 7 \\ x^2 = 9 \] **Step 4:** Take the square root of both sides. \[ x = \pm 3 \] **Verification:** - For \( x = 3 \): \[ \sqrt{3^2 + 7} - 4 = \sqrt{9 + 7} - 4 = \sqrt{16} - 4 = 4 - 4 = 0 \] - For \( x = -3 \): \[ \sqrt{(-3)^2 + 7} - 4 = \sqrt{9 + 7} - 4 = \sqrt{16} - 4 = 4 - 4 = 0 \] Both solutions are valid. **Solution:** \( x = 3 \) and \( x = -3 \) --- ### 4. \(\sqrt{x - 2} = 4 - x\) **Step 1:** Recognize that both sides must be non-negative. \[ \sqrt{x - 2} \geq 0 \quad \text{and} \quad 4 - x \geq 0 \\ x - 2 \geq 0 \Rightarrow x \geq 2 \\ 4 - x \geq 0 \Rightarrow x \leq 4 \] So, \( 2 \leq x \leq 4 \). **Step 2:** Square both sides to eliminate the square root. \[ (\sqrt{x - 2})^2 = (4 - x)^2 \\ x - 2 = 16 - 8x + x^2 \] **Step 3:** Rearrange the equation. \[ 0 = x^2 - 9x + 18 \] **Step 4:** Solve the quadratic equation. \[ x = \frac{9 \pm \sqrt{81 - 72}}{2} \\ x = \frac{9 \pm \sqrt{9}}{2} \\ x = \frac{9 \pm 3}{2} \] So, \[ x = \frac{12}{2} = 6 \quad \text{or} \quad x = \frac{6}{2} = 3 \] **Step 5:** Check for extraneous solutions within the domain \( 2 \leq x \leq 4 \). - **For \( x = 6 \):** \( 6 \) is not within \( 2 \leq x \leq 4 \). Discard. - **For \( x = 3 \):** \[ \sqrt{3 - 2} = 4 - 3 \\ \sqrt{1} = 1 \\ 1 = 1 \quad \text{(Valid)} \] **Solution:** \( x = 3 \) --- ### 5. \(\sqrt{3x + 13} - 1 = x\) **Step 1:** Isolate the square root. \[ \sqrt{3x + 13} = x + 1 \] **Step 2:** Recognize that the right side must be non-negative. \[ x + 1 \geq 0 \Rightarrow x \geq -1 \] **Step 3:** Square both sides to eliminate the square root. \[ (\sqrt{3x + 13})^2 = (x + 1)^2 \\ 3x + 13 = x^2 + 2x + 1 \] **Step 4:** Rearrange the equation. \[ 0 = x^2 - x - 12 \] **Step 5:** Solve the quadratic equation. \[ x = \frac{1 \pm \sqrt{1 + 48}}{2} \\ x = \frac{1 \pm \sqrt{49}}{2} \\ x = \frac{1 \pm 7}{2} \] So, \[ x = \frac{8}{2} = 4 \quad \text{or} \quad x = \frac{-6}{2} = -3 \] **Step 6:** Check for extraneous solutions within the domain \( x \geq -1 \). - **For \( x = 4 \):** \[ \sqrt{3(4) + 13} - 1 = 4 \\ \sqrt{12 + 13} - 1 = 4 \\ \sqrt{25} - 1 = 4 \\ 5 - 1 = 4 \\ 4 = 4 \quad \text{(Valid)} \] - **For \( x = -3 \):** \( -3 < -1 \). Disregard. **Solution:** \( x = 4 \) --- ### 6. \(\sqrt{4 - 3x} = 4 - 3x\) **Step 1:** Recognize that both sides must be non-negative. \[ \sqrt{4 - 3x} \geq 0 \quad \text{and} \quad 4 - 3x \geq 0 \\ 4 - 3x \geq 0 \Rightarrow x \leq \frac{4}{3} \] Also, the expression under the square root must be non-negative: \[ 4 - 3x \geq 0 \Rightarrow x \leq \frac{4}{3} \] **Step 2:** Let \( y = 4 - 3x \). The equation becomes: \[ \sqrt{y} = y \] **Step 3:** Solve for \( y \). \[ \sqrt{y} = y \\ \sqrt{y} - y = 0 \\ \sqrt{y} (1 - \sqrt{y}) = 0 \] So, \[ \sqrt{y} = 0 \quad \text{or} \quad 1 - \sqrt{y} = 0 \\ y = 0 \quad \text{or} \quad y = 1 \] **Step 4:** Substitute back \( y = 4 - 3x \). - **For \( y = 0 \):** \[ 4 - 3x = 0 \\ 3x = 4 \\ x = \frac{4}{3} \] - **For \( y = 1 \):** \[ 4 - 3x = 1 \\ 3x = 3 \\ x = 1 \] **Step 5:** Verify both solutions within the domain \( x \leq \frac{4}{3} \). - **For \( x = \frac{4}{3} \):** \[ \sqrt{4 - 3\left(\frac{4}{3}\right)} = 4 - 3\left(\frac{4}{3}\right) \\ \sqrt{4 - 4} = 4 - 4 \\ \sqrt{0} = 0 \\ 0 = 0 \quad \text{(Valid)} \] - **For \( x = 1 \):** \[ \sqrt{4 - 3(1)} = 4 - 3(1) \\ \sqrt{4 - 3} = 4 - 3 \\ \sqrt{1} = 1 \\ 1 = 1 \quad \text{(Valid)} \] **Solution:** \( x = \frac{4}{3} \) and \( x = 1 \) --- ## Summary of Solutions 1. \( x = 14 \) 2. \( x = \dfrac{4}{3} \) 3. \( x = 3 \) and \( x = -3 \) 4. \( x = 3 \) 5. \( x = 4 \) 6. \( x = \dfrac{4}{3} \) and \( x = 1 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

If we dive into each equation, it's like stepping into a mathematical adventure! Solving for \( x \) often leads to surprising revelations, and some paths can be trickier than they seem. When we simplify, we must always remember to check our answers, as squaring both sides can sometimes introduce extraneous solutions. 1. For \( \sqrt{x+2} = 4 \): Square both sides to get \( x + 2 = 16 \), giving \( x = 14 \). 2. For \( 3\sqrt{x} = 2\sqrt{3} \): Dividing both sides by 3 and then squaring, we find \( x = \frac{4}{3} \). 3. For \( \sqrt{x^2 + 7} - 4 = 0 \): Rearranging gives \( \sqrt{x^2 + 7} = 4 \), leading to \( x^2 = 9 \), hence \( x = 3 \) or \( x = -3 \). 4. For \( \sqrt{x - 2} = 4 - x \): After squaring, rearranging, and combining, we find \( x = 6 \) or \( x = -2 \) (check for validity). 5. For \( \sqrt{3x + 13} - 1 = x \): Squaring yields \( 3x + 13 = (x + 1)^2 \), leading to \( x = 2 \). 6. For \( \sqrt{4 - 3x} = 4 - 3x \): Square both sides and solve to find \( x = 0 \) or \( x = \frac{4}{10} \) (simplifying gives \( x = 0.4 \)). Remember, while the solutions appear fine, checking each solution within its original equation is the final, crucial step!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad