Pregunta
upstudy study bank question image url

1) Combine like terms on each side of the equation. For example, write 3 instead of \( 1+ \) 1.

Ask by Osborne Peterson. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To simplify the equation by combining like terms: 1. **Identify and combine like terms on each side.** 2. **Example:** - Original equation: \(2x + 3 + x - 5 = 4x - 2 + 6\) - Simplified: \(3x - 2 = 4x + 4\) Now, the equation is easier to solve.

Solución

Certainly! Combining like terms is a fundamental step in simplifying and solving equations. **Like terms** are terms that have the same variable raised to the same power. Here's how you can combine like terms on each side of an equation, along with an example to illustrate the process. ### **Step 1: Combine Like Terms on Each Side of the Equation** **Example Equation:** \[ 2x + 3 + x - 5 = 4x - 2 + 6 \] Let's break down the process: 1. **Identify Like Terms on Each Side:** - **Left Side (\(2x + 3 + x - 5\)):** - **\(2x\)** and **\(x\)** are like terms because they both have the variable \(x\). - **\(3\)** and **\(-5\)** are like terms because they are both constants (numbers without variables). - **Right Side (\(4x - 2 + 6\)):** - **\(4x\)** is a single term. - **\(-2\)** and **\(6\)** are like terms because they are both constants. 2. **Combine the Like Terms:** - **Left Side:** \[ 2x + x = (2 + 1)x = 3x \] \[ 3 - 5 = -2 \] So, the left side simplifies to: \[ 3x - 2 \] - **Right Side:** \[ -2 + 6 = 4 \] So, the right side simplifies to: \[ 4x + 4 \] 3. **Write the Simplified Equation:** \[ 3x - 2 = 4x + 4 \] Now, the equation \(2x + 3 + x - 5 = 4x - 2 + 6\) has been simplified by combining like terms on each side to become \(3x - 2 = 4x + 4\). ### **Key Points to Remember:** - **Combine like terms only.** Unlike terms (terms with different variables or different exponents) cannot be combined. - **Add or subtract the coefficients (the numerical part) of like terms.** - **Keep constants (numbers without variables) separate from variable terms unless they are like terms.** ### **Another Quick Example:** Simplify the equation by combining like terms: \[ 5y + 2 - 3y + 7 = y - 4 + 9 \] **Solution:** - **Left Side:** \[ 5y - 3y = 2y \] \[ 2 + 7 = 9 \] So, left side becomes \(2y + 9\). - **Right Side:** \[ -4 + 9 = 5 \] So, right side becomes \(y + 5\). **Simplified Equation:** \[ 2y + 9 = y + 5 \] Now, you can proceed to solve for \(y\) by further simplifying the equation. --- By consistently applying the process of combining like terms, you can simplify complex equations and make them easier to solve. If you have a specific equation you'd like help with, feel free to share it!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When you combine like terms, you simplify the equation to make it easier to work with. For instance, if you have an expression like \( 1 + 3x + 2 - 4x \), you would add the constant terms \( 1 + 2 \) to get \( 3 \) and the variable terms \( 3x - 4x \) to get \( -1x \), transforming it into \( 3 - 1x \). Once you combine like terms on both sides of the equation, you can start solving for the variable. For instance, if your equation looks like \( 2x + 3 = 4 - 1x + 1 \), simplify each side to \( 2x + 3 = 5 - 1x \). This allows you to isolate the variable more efficiently, leading you one step closer to finding the solution! Keep up the good work!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad