Pregunta
upstudy study bank question image url

Suppose that the function \( f \) is defined, for all real numbers, as follows. \[ f(x)=\left\{\begin{array}{cc}-2 x+3 & \text { if } x<2 \\ x-3 & \text { if } x \geq 2\end{array}\right. \] Graph the function \( f \). Then determine whether or not the function is continuous

Ask by Peterson Weston. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) \) is continuous for all real numbers.

Solución

To analyze the function \( f \) defined by \[ f(x) = \begin{cases} -2x + 3 & \text{if } x < 2, \\ x - 3 & \text{if } x \geq 2, \end{cases} \] let's break down its components, graph the function, and determine its continuity. ## Graphing the Function \( f \) The function \( f \) is piecewise-defined with two linear segments. Here's how each part behaves: 1. **For \( x < 2 \):** \[ f(x) = -2x + 3 \] - **Slope:** -2 (indicates the line is decreasing). - **Y-intercept:** 3 (the point where the line crosses the y-axis). - **Key Point:** When \( x = 2 \), \( f(2) = -2(2) + 3 = -1 \). However, since this piece is only for \( x < 2 \), the point \( (2, -1) \) is not included in this segment. 2. **For \( x \geq 2 \):** \[ f(x) = x - 3 \] - **Slope:** 1 (indicates the line is increasing). - **Y-intercept:** -3. - **Key Point:** At \( x = 2 \), \( f(2) = 2 - 3 = -1 \). This point **is** included in this segment. ### Plotting the Segments - **First Segment (\( x < 2 \)):** - Starts from the y-intercept at (0, 3). - Passes through the point \( (2, -1) \) but does not include it (usually represented with an open circle). - **Second Segment (\( x \geq 2 \)):** - Starts at \( (2, -1) \) (solid dot) since \( x = 2 \) is included. - Extends infinitely to the right with a slope of 1. ### Visual Representation While I can't draw the graph here, you can visualize it as follows: - **Left Line (\( x < 2 \)):** A straight line descending from the left, passing through (0, 3) and approaching \( (2, -1) \) with an open circle at \( (2, -1) \). - **Right Line (\( x \geq 2 \)):** A straight line ascending from \( (2, -1) \) onwards. ![Graph of the function f(x)](https://i.imgur.com/YourImageLink.png) *Note: Replace the URL with an actual graph image if available.* ## Determining Continuity A function is **continuous** at a point \( x = c \) if the following three conditions are met: 1. **\( f(c) \) is defined.** 2. **The limit \( \lim_{x \to c} f(x) \) exists.** 3. **\( \lim_{x \to c} f(x) = f(c) \).** Let's examine the point \( x = 2 \), where the definition of \( f(x) \) changes. 1. **\( f(2) \) is defined:** \[ f(2) = 2 - 3 = -1 \] 2. **Left-hand limit as \( x \) approaches 2:** \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (-2x + 3) = -2(2) + 3 = -1 \] 3. **Right-hand limit as \( x \) approaches 2:** \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x - 3) = 2 - 3 = -1 \] Since both one-sided limits exist and are equal to each other and to \( f(2) \), the function \( f \) is **continuous at \( x = 2 \)**. Moreover, each piece of \( f \) is a linear function, which is continuous everywhere on its domain. Therefore, the entire function \( f \) is **continuous for all real numbers**. ## Conclusion - **Graph:** The function consists of two straight lines: - A decreasing line \( -2x + 3 \) for \( x < 2 \), - An increasing line \( x - 3 \) for \( x \geq 2 \), - Both segments meet seamlessly at \( (2, -1) \). - **Continuity:** \( f(x) \) is **continuous for all real numbers**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To graph the piecewise function \( f(x) \), we’ll break it down into two parts based on the defined intervals: 1. For \( x < 2 \), the function is given by \( f(x) = -2x + 3 \). This is a line with a slope of -2 that intersects the y-axis at (0, 3). For \( x < 2 \), you can plot points like \( f(0) = 3 \), \( f(1) = 1 \), and \( f(2) \) (though it won't be included in this part of the graph). 2. For \( x \geq 2 \), the function is defined as \( f(x) = x - 3 \). This is another line with a slope of 1 that intersects the y-axis at (0, -3). You can plot points like \( f(2) = -1 \), \( f(3) = 0 \), and so on. When you put these two parts together, you will see that the graph consists of two linear pieces: one decreasing line segment for \( x < 2 \) and another increasing line segment starting from \( x = 2 \). To check for continuity, we need to see if the function is continuous at the point where the definitions change, \( x = 2 \): 1. Evaluate \( f(2) = 2 - 3 = -1 \). 2. Check the limit from the left as \( x \) approaches 2: \( \lim_{x \to 2^-} f(x) = -2(2) + 3 = -1 \). 3. Check the limit from the right as \( x \) approaches 2: \( \lim_{x \to 2^+} f(x) = 2 - 3 = -1 \). Since the left limit, right limit, and the function value at \( x = 2 \) are all equal to -1, \( f(x) \) is continuous everywhere, including at \( x = 2 \). Therefore, the function is continuous.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad