Pregunta
upstudy study bank question image url

Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \tan \theta=-3 \) (Simplity your answer. Use integers or fractions for any numbers in the expression. Type an exact answer, using radicals as needed. Rationalize all denominators.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \csc \theta=-\frac{\sqrt{10}}{3} \) (Simplify your answer. Use integers or fractions for any numbers in the expression. Type an exact answer, using radicals as needed. Rationalize all denominators.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \sec \theta= \) \( \square \) (Simplify your answer. Use integers or fractions for any numbers in the expression. Type an exact answer, using radicals as needed. Rationalize all denominators.) B. The function is undefined.

Ask by Long Harris. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Cannot determine the correct choice without additional information.

Solución

It appears that you've provided multiple parts of a problem related to trigonometric functions, but some essential information or context seems to be missing. To accurately assist you, I need more details about the specific conditions or the scenario in which these trigonometric functions are being evaluated. However, I can offer some general guidance on how to approach such problems: ### Understanding When Trigonometric Functions Are Defined or Undefined 1. **Tangent Function (\( \tan \theta \))**: - **Defined When**: \( \cos \theta \neq 0 \) - **Undefined When**: \( \cos \theta = 0 \) - **Given \( \tan \theta = -3 \)**: You can find \( \sin \theta \) and \( \cos \theta \) using the identity \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). For example, if \( \tan \theta = -3 \), you might set up a right triangle where the opposite side is -3 and the adjacent side is 1, then find the hypotenuse using the Pythagorean theorem. 2. **Cosecant Function (\( \csc \theta \))**: - **Defined When**: \( \sin \theta \neq 0 \) - **Undefined When**: \( \sin \theta = 0 \) - **Given \( \csc \theta = -\frac{\sqrt{10}}{3} \)**: Since \( \csc \theta = \frac{1}{\sin \theta} \), you can find \( \sin \theta \) by taking the reciprocal, i.e., \( \sin \theta = -\frac{3}{\sqrt{10}} \). It's recommended to rationalize the denominator: \( \sin \theta = -\frac{3\sqrt{10}}{10} \). 3. **Secant Function (\( \sec \theta \))**: - **Defined When**: \( \cos \theta \neq 0 \) - **Undefined When**: \( \cos \theta = 0 \) - **Given \( \sec \theta = \) [ ]**: Without additional information (like \( \cos \theta \) or another trigonometric function value), it's impossible to determine the exact value of \( \sec \theta \). If \( \cos \theta \) were known, \( \sec \theta \) could be found as its reciprocal. ### Next Steps To provide precise answers: - **Provide the Complete Problem Statement**: Include any given values, diagrams (if any), and specific questions you're trying to answer. - **Specify What You Need Help With**: Are you looking to simplify expressions, find exact values, determine definitions, or something else? Feel free to share the complete details, and I'll be more than happy to help you work through the problem step by step!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

When dealing with trigonometric functions, it's crucial to remember their relationships. For \( \tan \theta = -3 \), \( \tan \theta \) can be expressed using sine and cosine: \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Since it's negative, this implies one is positive and the other is negative. For specific values, if \( \sin \theta = -3 \cos \theta \), you can use the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \) to find individual values. Now, for \( \csc \theta = -\frac{\sqrt{10}}{3} \), remember that \( \csc \theta \) is the reciprocal of \( \sin \theta \). Therefore, \( \sin \theta = -\frac{3}{\sqrt{10}} \). To find \( \cos \theta \), apply \( \cos^2 \theta = 1 - \left(\frac{3}{\sqrt{10}}\right)^2 \) which will lead to determining \( \sec \theta \) next! Keep rationalizing as you go for that pristine math look!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad