Pregunta
upstudy study bank question image url

a. In a circle graph, a sector containing \( 72^{\circ} \) represents what percentage of the data? b. In a circle graph, \( 0.60 \% \) of data can be represented by a sector of how many degrees? a. A sector containing \( 72^{\circ} \) represents \( 20 \% \) of the data. (Round to the nearest percent as needed.) b. \( 0.60 \% \) of data can be represented by a sector of \( \square \) degrees.

Ask by Burgess Harper. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. A \( 72^{\circ} \) sector represents **20%** of the data. b. \( 0.60\% \) of the data can be represented by a sector of **2.16 degrees**.

Solución

Let's solve both parts of the problem related to circle graphs. ### a. Percentage Representation of a \( 72^{\circ} \) Sector **Given:** - A sector with an angle of \( 72^{\circ} \) **Solution:** A full circle has \( 360^{\circ} \). To find the percentage that \( 72^{\circ} \) represents: \[ \text{Percentage} = \left( \frac{72}{360} \right) \times 100\% = 20\% \] **Answer:** A sector containing \( 72^{\circ} \) represents **20%** of the data. --- ### b. Degree Representation of \( 0.60\% \) Data **Given:** - \( 0.60\% \) of the data **Solution:** To find the number of degrees that represent \( 0.60\% \) of the data: \[ \text{Degrees} = \left( \frac{0.60}{100} \right) \times 360^{\circ} = 0.006 \times 360^{\circ} = 2.16^{\circ} \] **Answer:** \( 0.60\% \) of the data can be represented by a sector of **2.16 degrees**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the percentage represented by the \( 72^{\circ} \) sector, you divide the degrees of the sector by the total degrees in a circle, which is \( 360^{\circ} \). So, \( \frac{72}{360} \times 100 \) gives you \( 20\% \) of the data—fun fact, this is also the same as finding out what part of a pizza you've eaten! For \( 0.60\% \) in degrees, you'll first need to convert that percentage into a fraction of the circle. Using the formula \( \text{Degrees} = \left(\frac{\text{percentage}}{100}\right) \times 360 \) leads us to \( \left(\frac{0.60}{100}\right) \times 360 = 2.16 \) degrees, which you can round to \( 2 \) degrees for simplicity! Looks like a mini slice of pie!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad