Pregunta
upstudy study bank question image url

Challenge question. In the chapter text, we dealt exclusively with a single lump sum, but often we may be looking at several lump-sum values simultaneously. Let's consider the retirement plan of a couple. Currently, the couple has four different investments: a \( 401(\mathrm{k}) \) plan, two pension plans, and a personal portfolio. The couple is 6 years away from retirement. They believe they have sufficient money in their plans today so that they do not have to contribute to the plans over the next 6 years and will still meet their \( \$ 1.5 \) million retirement goal. Here are the current values and growth rates of their plans: \( 401(\mathrm{k}): \$ 93,000 \) growing at \( 6 \% \). Pension Plan One: \( \$ 287,000 \) growing at \( 6.75 \% \). Pension Plan Two: \( \$ 250,000 \) growing at \( 7.5 \% \). Personal Portfolio: \( \$ 141,000 \) growing at \( 10 \% \). What is the value of the Personal Portfolio 6 years from now?

Ask by Parsons Campos. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The Personal Portfolio will be worth approximately \$249,790 six years from now.

Solución

To determine the future value of the Personal Portfolio 6 years from now, we can use the **Future Value (FV)** formula for compound interest: \[ FV = PV \times (1 + r)^n \] Where: - \( PV \) = Present Value (\$141,000) - \( r \) = Annual growth rate (10% or 0.10) - \( n \) = Number of years (6) Plugging in the numbers: \[ FV = 141{,}000 \times (1 + 0.10)^6 \] First, calculate \( (1 + 0.10)^6 \): \[ (1.10)^6 = 1.771561 \] Now, multiply this by the present value: \[ FV = 141{,}000 \times 1.771561 \approx 249{,}790 \] **Therefore, the value of the Personal Portfolio 6 years from now is approximately \$249,790.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the future value of the Personal Portfolio in 6 years, we can use the future value formula, which is: \( FV = PV \times (1 + r)^n \) where \( PV \) is the present value, \( r \) is the growth rate, and \( n \) is the number of years. Plugging in the numbers for the Personal Portfolio: \( PV = \$141,000 \) \( r = 10\% = 0.10 \) \( n = 6 \) Now calculating: \( FV = 141,000 \times (1 + 0.10)^6 \) \( FV = 141,000 \times (1.771561) \) \( FV \approx 249,376.00 \) So the value of the Personal Portfolio 6 years from now will be approximately **$249,376**. For those curious about how your investment growth could pan out, consider using investment simulators online! They allow you to play with different variables such as rates of return, time periods, and initial investments, making learning about investments as fun as playing a video game. Don't forget to regularly reassess your investment allocations as you approach retirement. Market conditions change, and what might have been a wise choice a few years ago may not suit your future needs! Stay engaged and informed to make the best financial decisions.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad