Pregunta
upstudy study bank question image url

16 Let \( (H) \) be the hyperbola representing the function defined by \( f(x)=\frac{m x}{3 x-3}-m \), where \( m \) is is a real parameter other than \( 3 .(D) \) is the line of equation \( y=-x+4 \). \( 1^{\circ} \) Find the coordinates of the center \( I \) of \( (H) \) and deduce the set of points \( I \) when \( m \) varies . \( 2^{\circ} \) Study, according to the values of \( m \), the number of points of intersection of \( (H) \) and \( (D) \).

Ask by Riley French. in Lebanon
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The center \( I \) of the hyperbola \( (H) \) is at \( (1, \frac{m}{3}) \). For all real values of \( m \) except \( m = 3 \), the hyperbola \( (H) \) intersects the line \( (D) \) at 2 points.

Solución

To solve the problem, we will follow the steps outlined in the prompt. ### Step 1: Find the coordinates of the center \( I \) of the hyperbola \( (H) \) The function given is: \[ f(x) = \frac{m x}{3 x - 3} - m \] To find the center of the hyperbola, we need to rewrite the function in a standard form. First, we simplify \( f(x) \): 1. Combine the terms: \[ f(x) = \frac{m x}{3(x - 1)} - m = \frac{m x - 3m(x - 1)}{3(x - 1)} = \frac{m x - 3m x + 3m}{3(x - 1)} = \frac{-2m x + 3m}{3(x - 1)} \] 2. The hyperbola can be expressed in the form \( \frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1 \) where \( (h, k) \) is the center. To find the center, we need to identify the vertical and horizontal asymptotes of the hyperbola. The vertical asymptote occurs when the denominator is zero: \[ 3x - 3 = 0 \implies x = 1 \] The horizontal asymptote can be found by analyzing the behavior of \( f(x) \) as \( x \to \infty \): \[ f(x) \approx \frac{m x}{3 x} = \frac{m}{3} \] Thus, the horizontal asymptote is \( y = \frac{m}{3} \). The center \( I \) of the hyperbola is at the intersection of the asymptotes: \[ I = (1, \frac{m}{3}) \] ### Deduce the set of points \( I \) when \( m \) varies As \( m \) varies, the \( y \)-coordinate of the center \( I \) changes. Therefore, the set of points \( I \) is: \[ I = \{ (1, \frac{m}{3}) \mid m \in \mathbb{R}, m \neq 3 \} \] This describes a vertical line at \( x = 1 \) for all \( y \) values except \( y = 1 \) (when \( m = 3 \)). ### Step 2: Study the number of points of intersection of \( (H) \) and \( (D) \) The line \( (D) \) is given by: \[ y = -x + 4 \] To find the points of intersection, we set \( f(x) = -x + 4 \): \[ \frac{m x}{3 x - 3} - m = -x + 4 \] Rearranging gives: \[ \frac{m x}{3 x - 3} + x - 4 - m = 0 \] Multiplying through by \( 3x - 3 \) to eliminate the fraction: \[ m x + (x - 4 - m)(3x - 3) = 0 \] Expanding this: \[ m x + (3x^2 - 3x - 12x + 12 - 3m) = 0 \] Combining like terms: \[ 3x^2 + (m - 15)x + (12 - 3m) = 0 \] This is a quadratic equation in \( x \). The number of solutions (points of intersection) depends on the discriminant \( \Delta \): \[ \Delta = (m - 15)^2 - 4 \cdot 3 \cdot (12 - 3m) \] Calculating the discriminant: \[ \Delta = (m - 15)^2 - 12(12 - 3m) = (m - 15)^2 - 144 + 36m \] Simplifying: \[ \Delta = m^2 - 30m + 225 - 144 + 36m = m^2 + 6m + 81 \] Now, we analyze the discriminant \( \Delta \): 1. **If \( \Delta > 0 \)**: There are 2 points of intersection. 2. **If \( \Delta = 0 \)**: There is 1 point of intersection (tangential). 3. **If \( \Delta < 0 \)**: There are no points of intersection. Since \( m^2 + 6m + 81 \) is a quadratic with a positive leading coefficient and its discriminant is negative (as \( 6^2 - 4 \cdot 1 \cdot 81 < 0 \)), it is always positive for all real \( m \). Thus, \( \Delta > 0 \) for all \( m \in \mathbb{R} \), meaning there are always 2 points of intersection between the hyperbola \( (H) \) and the line \( (D) \) for all values of \( m \) except \( m = 3 \). ### Conclusion 1. The coordinates of the center \( I \) of the hyperbola \( (H) \) are \( (1, \frac{m}{3}) \), forming a vertical line at \( x = 1 \) as \( m \) varies. 2. The hyperbola \( (H) \) intersects the line \( (D) \) at 2 points for all \( m \in \mathbb{R} \) except \( m = 3 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the center \( I \) of the hyperbola \( (H) \), we first rewrite the function \( f(x) = \frac{mx}{3x-3} - m \). This can be manipulated to find the center. Note that the hyperbola \( (H) \) has a vertical asymptote as well as a center that can be derived from analyzing the function. If we express it in standard form, we can determine that the center \( I \) is at the point \( (1, -m) \). As \( m \) varies (except for \( m = 3 \)), the set of points \( I \) will be the line defined by \( (1, -m) \) for all \( m \in \mathbb{R} \). Next, to study the intersection of \( (H) \) and \( (D) \), we set \( f(x) = -x + 4 \) and solve for \( m \). Rearranging gives us a quadratic in \( m \) which results in the condition for \( m \) based on the discriminant of the quadratic equation derived. The number of intersection points, thus, depends on whether the discriminant is positive (two intersections), zero (one intersection), or negative (no intersections). Hence, by analyzing the discriminant, we can determine the precise count of intersections for different values of \( m \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad