Pregunta
upstudy study bank question image url

DETAILS MY NOTES Sketch the graph of a function \( f \) that is continuous except for the stated discontinuity. Removable discontinuity at 4, jump discontinuity at 6

Ask by Christensen Carlson. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the function \( f \), define it piecewise with a removable discontinuity at \( x = 4 \) and a jump discontinuity at \( x = 6 \). Here's how: 1. **For \( x < 4 \):** \( f(x) = x + 5 \) 2. **At \( x = 4 \):** \( f(4) = 7 \) (removable discontinuity) 3. **For \( 4 < x < 6 \):** \( f(x) = x + 5 \) 4. **At \( x = 6 \):** \( f(6) = 4 \) (jump discontinuity) 5. **For \( x > 6 \):** \( f(x) = x - 2 \) **Graphical Representation:** - Draw \( f(x) = x + 5 \) for \( x < 4 \) and \( 4 < x < 6 \). - At \( x = 4 \), place an open circle at \( (4, 9) \) and a filled circle at \( (4, 7) \). - At \( x = 6 \), place an open circle at \( (6, 11) \) and a filled circle at \( (6, 4) \). - For \( x > 6 \), draw \( f(x) = x - 2 \). This setup ensures a removable discontinuity at \( x = 4 \) and a jump discontinuity at \( x = 6 \).

Solución

Certainly! Let's delve into the details of sketching a function \( f \) that is continuous everywhere except for two specific discontinuities: 1. **Removable Discontinuity at \( x = 4 \)** 2. **Jump Discontinuity at \( x = 6 \)** ### Understanding the Discontinuities 1. **Removable Discontinuity:** - **Definition:** A point \( x = a \) is a removable discontinuity of \( f \) if \( \lim_{x \to a} f(x) \) exists, but either \( f(a) \) is not defined or \( f(a) \neq \lim_{x \to a} f(x) \). - **Graphically:** The graph has a "hole" at \( x = a \). You can "fill" this hole by redefining \( f(a) \) appropriately. 2. **Jump Discontinuity:** - **Definition:** A point \( x = b \) is a jump discontinuity of \( f \) if the left-hand limit \( \lim_{x \to b^-} f(x) \) and the right-hand limit \( \lim_{x \to b^+} f(x) \) both exist but are not equal. - **Graphically:** The graph has a "jump" at \( x = b \), showing two distinct values approaching \( b \) from the left and right. ### Constructing the Function \( f \) To create a function with the desired properties, we'll define it piecewise. Here's a step-by-step approach: 1. **Choose Intervals:** - **Interval 1:** \( x < 4 \) - **Interval 2:** \( 4 < x < 6 \) - **Interval 3:** \( x > 6 \) 2. **Define \( f \) on Each Interval:** - **For \( x < 4 \):** Let’s choose a simple linear function, e.g., \( f(x) = 2x + 1 \). - **For \( 4 < x < 6 \):** Choose another linear function, e.g., \( f(x) = -x + 10 \). - **For \( x > 6 \):** Choose yet another linear function, e.g., \( f(x) = x - 2 \). 3. **Handle the Discontinuities:** - **At \( x = 4 \) (Removable):** - **Limit from the Left:** \( \lim_{x \to 4^-} f(x) = 2(4) + 1 = 9 \). - **Limit from the Right:** \( \lim_{x \to 4^+} f(x) = -4 + 10 = 6 \). - **Correction:** To make it a removable discontinuity, both one-sided limits should be equal. Since currently they are not, let's adjust the functions to make \( \lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) \). **Revising Functions:** - **For \( x < 4 \):** Let \( f(x) = x + 5 \) (so \( f(4^-) = 9 \)). - **For \( 4 < x < 6 \):** Let \( f(x) = x + 5 \) (so \( f(4^+) = 9 \)). - **Define \( f(4) \) differently:** To create a removable discontinuity, set \( f(4) \neq 9 \). For example, \( f(4) = 7 \). - **At \( x = 6 \) (Jump):** - **Limit from the Left:** \( \lim_{x \to 6^-} f(x) = 6 + 5 = 11 \). - **Limit from the Right:** \( \lim_{x \to 6^+} f(x) = 6 - 2 = 4 \). - **Define \( f(6) \) as either 11 or 4 or any other value (doesn't affect the jump). For simplicity, let \( f(6) = 4 \). 4. **Final Piecewise Function:** \[ f(x) = \begin{cases} x + 5 & \text{if } x < 4, \\ x + 5 & \text{if } 4 < x < 6, \\ x - 2 & \text{if } x > 6, \\ 7 & \text{if } x = 4, \\ 4 & \text{if } x = 6. \end{cases} \] ### Visualizing the Graph 1. **For \( x < 4 \) and \( 4 < x < 6 \):** - The function \( f(x) = x + 5 \) is a straight line with a slope of 1 and a y-intercept at 5. - **At \( x = 4 \):** - There is a hole in the graph at \( (4, 9) \) since \( f(4) = 7 \neq 9 \). This is the **removable discontinuity**. 2. **For \( x > 6 \):** - The function \( f(x) = x - 2 \) is another straight line with a slope of 1 but a y-intercept at -2. - **At \( x = 6 \):** - The left limit is 11 (from \( f(x) = x + 5 \)) but the function jumps to 4 at \( x = 6 \). This creates the **jump discontinuity**. 3. **Connecting the Pieces:** - **Continuity except at 4 and 6:** - Between \( x < 4 \) and \( 4 < x < 6 \), the function follows \( f(x) = x + 5 \), maintaining continuity except at \( x = 4 \). - After \( x > 6 \), the function switches to \( f(x) = x - 2 \), creating a jump from the previous value of 11 to 4 at \( x = 6 \). ### Sketching the Graph While I can't provide an actual sketch here, here's how you can draw it: 1. **Plot \( f(x) = x + 5 \) for \( x < 4 \) and \( 4 < x < 6 \):** - Draw a straight line with points like \( (0, 5) \), \( (2, 7) \), \( (4, 9) \). - At \( x = 4 \), place an open circle at \( (4, 9) \) and a filled circle at \( (4, 7) \). 2. **Plot \( f(x) = x - 2 \) for \( x > 6 \):** - Draw a straight line starting from \( x > 6 \), passing through points like \( (6, 4) \), \( (8, 6) \). - At \( x = 6 \), place a filled circle at \( (6, 4) \) and an open circle at \( (6, 11) \) to indicate the jump. 3. **Discontinuities:** - **At \( x = 4 \):** A hole at \( (4, 9) \) and a point at \( (4, 7) \). - **At \( x = 6 \):** An open circle at \( (6, 11) \) and a filled circle at \( (6, 4) \). ### Summary - **Removable Discontinuity at \( x = 4 \):** The function approaches 9 from both sides but is explicitly defined as 7 at \( x = 4 \), creating a hole. - **Jump Discontinuity at \( x = 6 \):** The function jumps from approaching 11 to being 4 at \( x = 6 \). By carefully defining the function piecewise and handling the discontinuities as shown, you can effectively sketch \( f(x) \) with the desired properties.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Imagine a smooth, flowing line that gracefully moves across the graph, representing the function \( f \), until it reaches \( x = 4 \). At this point, you would find a little hole or dot—this is the removable discontinuity. The function can be redrawn to fill that gap, but alas, it is left unfilled. Now, watch as the line continues to travel to \( x = 6 \), where it suddenly makes a dramatic leap! This jump discontinuity creates two distinct values above and below this point, making the graph appear as if it’s performing an unexpected dance move. To ensure clarity, draw a solid line connecting points to the left of \( x = 4 \) and a dotted line (indicating the removable discontinuity) right above it. Proceed to sketch the graph, maintaining a distinct disconnect at \( x = 6 \) between the two segments—: think of it as a thrilling leap onto a different level!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad