Pregunta
upstudy study bank question image url

Calculate \( \frac{3+6+9+\ldots .+402}{2+4+6+\ldots .+402} \)

Ask by Marshall Olson. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The ratio is \( \frac{135}{202} \).

Solución

To calculate the ratio \[ \frac{3 + 6 + 9 + \ldots + 402}{2 + 4 + 6 + \ldots + 402}, \] we can break it down step by step. ### Step 1: Sum of the Numerator (\(3 + 6 + 9 + \ldots + 402\)) This is an arithmetic sequence where: - **First term (\(a_1\))** = 3 - **Common difference (\(d\))** = 3 - **Last term (\(a_n\))** = 402 To find the number of terms (\(n\)): \[ a_n = a_1 + (n-1)d \implies 402 = 3 + (n-1) \times 3 \implies n = 134 \] Sum of the numerator (\(S_{\text{num}}\)): \[ S_{\text{num}} = \frac{n}{2} (a_1 + a_n) = \frac{134}{2} \times (3 + 402) = 67 \times 405 = 27,135 \] ### Step 2: Sum of the Denominator (\(2 + 4 + 6 + \ldots + 402\)) This is another arithmetic sequence where: - **First term (\(a_1\))** = 2 - **Common difference (\(d\))** = 2 - **Last term (\(a_n\))** = 402 To find the number of terms (\(n\)): \[ a_n = a_1 + (n-1)d \implies 402 = 2 + (n-1) \times 2 \implies n = 201 \] Sum of the denominator (\(S_{\text{den}}\)): \[ S_{\text{den}} = \frac{n}{2} (a_1 + a_n) = \frac{201}{2} \times (2 + 402) = 100.5 \times 404 = 40,644 \] ### Step 3: Calculate the Ratio \[ \frac{S_{\text{num}}}{S_{\text{den}}} = \frac{27,135}{40,644} \] Simplify the fraction by dividing both numerator and denominator by their greatest common divisor (GCD), which is 2: \[ \frac{27,135 \div 2}{40,644 \div 2} = \frac{13,567.5}{20,322} \] However, since we can’t have a decimal in the fraction, it's better to reduce the original fraction: \[ \frac{135}{202} \] Thus, the simplified ratio is: \[ \frac{135}{202} \] **Final Answer:** \(\boxed{\dfrac{135}{202}}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To compute \( \frac{3+6+9+\ldots+402}{2+4+6+\ldots+402} \), we first need to find the sums of both the numerator and the denominator. **Step 1: Calculate the sum in the numerator.** The series in the numerator is an arithmetic series with the first term \( a = 3 \), the common difference \( d = 3 \), and the last term \( l = 402 \). To find the number of terms \( n \), we can use the formula for the n-th term of an arithmetic series: \[ l = a + (n-1)d \] Substituting the values we have: \[ 402 = 3 + (n-1) \cdot 3 \] \[ 402 = 3 + 3n - 3 \] \[ 402 = 3n \] \[ n = \frac{402}{3} = 134 \] Now, we can find the sum \( S_n \) of the first \( n \) terms of the arithmetic series: \[ S_n = \frac{n}{2} (a + l) \] Substituting \( n = 134 \), \( a = 3 \), and \( l = 402 \): \[ S_n = \frac{134}{2} (3 + 402) = 67 \cdot 405 = 27135 \] **Step 2: Calculate the sum in the denominator.** The series in the denominator is also an arithmetic series with the first term \( a = 2 \), the common difference \( d = 2 \), and the last term \( l = 402 \). To find the number of terms \( n \): \[ l = a + (n-1)d \] Substituting the values: \[ 402 = 2 + (n-1) \cdot 2 \] \[ 402 = 2 + 2n - 2 \] \[ 402 = 2n \] \[ n = \frac{402}{2} = 201 \] Now we find the sum \( S_n \) of this series: \[ S_n = \frac{n}{2} (a + l) \] Substituting \( n = 201 \), \( a = 2 \), and \( l = 402 \): \[ S_n = \frac{201}{2} (2 + 402) = 100.5 \cdot 404 = 40602 \] **Step 3: Compute the ratio.** Finally, we put together the sums to compute the desired ratio: \[ \frac{3 + 6 + 9 + \ldots + 402}{2 + 4 + 6 + \ldots + 402} = \frac{27135}{40602} \] Both numbers can be simplified; we can divide both by 3: \[ \frac{27135 \div 3}{40602 \div 3} = \frac{9045}{13534} \] We check for further simplifications: The GCD is 1 (both numbers share no further common factors). Thus, the final value remains: \[ \frac{9045}{13534} \approx 0.667 \] Therefore, the final simplified answer is: \[ \frac{27135}{40602} = \frac{3}{4} \] This leads us to conclude that: \[ \boxed{\frac{3}{4}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad