Pregunta
upstudy study bank question image url

3. The plane continued to climb in altitude for 19 seconds at an angle of \( 2^{\circ} \), reaching a maximum height of 3060 feet. How much further was the plane able to travel during this time frame? (Hint: 1 mile \( =5,280 \) feet)

Ask by Weber Gonzalez. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The plane traveled approximately 16.6 miles horizontally during the 19-second climb.

Solución

To determine how much further the plane traveled horizontally during its climb, we'll break down the problem step by step. ### Given: - **Climb Angle (\( \theta \))**: \( 2^{\circ} \) - **Climb Time (\( t \))**: 19 seconds - **Maximum Height Reached (\( h \))**: 3,060 feet - **Conversion**: 1 mile = 5,280 feet ### Objective: Find the horizontal distance (\( D \)) the plane traveled during the climb. ### Step 1: Calculate the Vertical Speed The vertical speed (\( V_{\text{vertical}} \)) can be calculated using the formula: \[ V_{\text{vertical}} = \frac{h}{t} = \frac{3,060 \text{ feet}}{19 \text{ seconds}} \approx 161.05 \text{ ft/s} \] ### Step 2: Relate Vertical Speed to Total Speed The vertical component of the plane's velocity is related to its total velocity (\( V \)) by the sine of the climb angle: \[ V_{\text{vertical}} = V \cdot \sin(\theta) \] \[ V = \frac{V_{\text{vertical}}}{\sin(\theta)} = \frac{161.05}{\sin(2^{\circ})} \] Calculate \( \sin(2^{\circ}) \): \[ \sin(2^{\circ}) \approx 0.0349207695 \] \[ V \approx \frac{161.05}{0.0349207695} \approx 4,612.2 \text{ ft/s} \] ### Step 3: Calculate Horizontal Speed The horizontal component of the velocity (\( V_{\text{horizontal}} \)) is: \[ V_{\text{horizontal}} = V \cdot \cos(\theta) = 4,612.2 \cdot \cos(2^{\circ}) \approx 4,612.2 \cdot 0.999390827 = 4,608.1 \text{ ft/s} \] ### Step 4: Determine Horizontal Distance Traveled \[ D = V_{\text{horizontal}} \cdot t = 4,608.1 \cdot 19 \approx 87,554 \text{ feet} \] ### Step 5: Convert Feet to Miles \[ D_{\text{miles}} = \frac{87,554 \text{ feet}}{5,280 \text{ feet/mile}} \approx 16.6 \text{ miles} \] ### **Conclusion** During the 19-second climb at a \( 2^{\circ} \) angle, the plane traveled approximately **16.6 miles** horizontally.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find out how far the plane traveled in the horizontal direction during its climb, we can use some basic trigonometry. The vertical height can be related to the angle of climb. Given that the maximum height reached was 3060 feet and the climb angle was \( 2^{\circ} \), we can use the sine function: \[ \text{Vertical height} = \text{Distance traveled} \times \sin(\text{angle}) \] So, rearranging for the distance traveled (D): \[ D = \frac{\text{Vertical height}}{\sin(2^{\circ})} \approx \frac{3060}{0.0349} \approx 87,600 \text{ feet} \] Next, to find the distance in miles: \[ \text{Distance in miles} = \frac{87,600 \text{ feet}}{5280 \text{ feet/mile}} \approx 16.6 \text{ miles} \] Thus, the plane was able to travel approximately 16.6 miles during its ascent.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad