Pregunta

(d) Consider the geometric series \( 3+9+27+\ldots \) (1) Calculate \( S_{8} \). (2) Determine the value of \( k \) if \( S_{k}=88572 \). (3) Determine the least number of terms for which the sum will be greater than 20000.

Ask by Hilton Wagner. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part (1):** The sum of the first 8 terms \( S_8 \) is 9,840. **Part (2):** The value of \( k \) when the sum \( S_k = 88,572 \) is 10. **Part (3):** The least number of terms needed for the sum to exceed 20,000 is 9.

Solución

Let's analyze the geometric series \( 3 + 9 + 27 + \ldots \) where the first term \( a = 3 \) and the common ratio \( r = 3 \). ### Part (1): Calculate \( S_8 \) The sum of the first \( n \) terms of a geometric series is given by: \[ S_n = a \frac{r^n - 1}{r - 1} \] For \( n = 8 \): \[ S_8 = 3 \cdot \frac{3^8 - 1}{3 - 1} = 3 \cdot \frac{6561 - 1}{2} = 3 \cdot \frac{6560}{2} = 3 \cdot 3280 = 9840 \] **Answer:** \( S_8 = 9840 \) ### Part (2): Determine the value of \( k \) if \( S_k = 88572 \) Using the sum formula: \[ S_k = 3 \cdot \frac{3^k - 1}{2} = 88572 \] Solving for \( 3^k \): \[ 3^k - 1 = \frac{88572 \times 2}{3} = 59048 \implies 3^k = 59049 \] Since \( 59049 = 3^{10} \), it follows that: **Answer:** \( k = 10 \) ### Part (3): Determine the least number of terms for which the sum will be greater than 20,000 We need to find the smallest \( n \) such that: \[ S_n = 3 \cdot \frac{3^n - 1}{2} > 20000 \] Solving for \( 3^n \): \[ 3^n - 1 > \frac{20000 \times 2}{3} \approx 13333.33 \implies 3^n > 13334.33 \] Checking powers of 3: \[ 3^8 = 6561 \quad (\text{too small}) \\ 3^9 = 19683 \quad (\text{sufficient}) \] Thus, \( n = 9 \) is the smallest number of terms required. **Answer:** The least number of terms needed is 9.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The geometric series given is \( 3 + 9 + 27 + \ldots \) with a first term \( a = 3 \) and a common ratio \( r = 3 \). (1) To calculate \( S_{8} \), we use the formula for the sum of the first \( n \) terms of a geometric series: \[ S_n = a \frac{r^n - 1}{r - 1} \] Substituting \( a = 3 \), \( r = 3 \), and \( n = 8 \): \[ S_8 = 3 \frac{3^8 - 1}{3 - 1} = 3 \frac{6561 - 1}{2} = 3 \frac{6560}{2} = 3 \times 3280 = 9840 \] So, \( S_{8} = 9840 \). (2) We need to find \( k \) such that \( S_k = 88572 \): \[ S_k = 3 \frac{3^k - 1}{3 - 1} = 3 \frac{3^k - 1}{2} = \frac{3^{k+1} - 3}{2} \] Setting this equal to 88572: \[ \frac{3^{k+1} - 3}{2} = 88572 \] Multiplying both sides by 2: \[ 3^{k+1} - 3 = 177144 \] Adding 3 to both sides: \[ 3^{k+1} = 177147 \] Now we can express 177147 as a power of 3. We find that \( 177147 = 3^{11} \) (since \( 3^{11} = 177147 \)). Setting the exponents equal gives us: \[ k + 1 = 11 \Rightarrow k = 10 \] Thus, the value of \( k \) is \( 10 \). (3) We want the sum to be greater than 20000: \[ S_n = 3 \frac{3^n - 1}{3 - 1} = \frac{3^{n+1} - 3}{2} > 20000 \] Multiplying both sides by 2: \[ 3^{n+1} - 3 > 40000 \] Adding 3 to both sides: \[ 3^{n+1} > 40003 \] Taking logarithm base 3: \[ n + 1 > \log_3(40003) \] Calculating \( \log_3(40003) \): Using the change of base formula: \[ \log_3(40003) = \frac{\log_{10}(40003)}{\log_{10}(3)} \approx \frac{4.602}{0.477} \approx 9.64 \] Thus, \[ n + 1 > 9.64 \Rightarrow n > 8.64 \] The least integer satisfying this is \( n = 9 \). Therefore, at least \( 9 \) terms are needed for the sum to exceed \( 20000 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad