\( \left\{\begin{array}{l}\text { if } F(n)=(x-4)^{3} \sqrt{x+3} \\ \lim _{n \rightarrow 6} \frac{F^{2}(5-h)-3 F(5-h)+2}{h(5-h)}=? \\ \begin{array}{llll}11 \frac{13}{15} & \text { 2) } \frac{5}{7} & \text { 3) } \frac{5}{12} & 4) \frac{13}{30}\end{array}\end{array}\right. \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the limit problem, we first need to comprehend the function \( F(n) = (x-4)^3 \sqrt{x+3} \) and evaluate what happens as \( n \) approaches 6 by substituting \( x \) with \( 5-h \). Upon substitution, we find \( F(5-h) = ((1-h)^3) \sqrt{2-h} \). Then, we calculate the limit conditionally as \( h \) approaches 0. The numerator simplifies to derive the result from \( F^2(5-h) - 3F(5-h) + 2 \) where we evaluate that respectively. After substituting and doing the algebra, we reach \( \frac{8}{15} \) upon resolving the limit. Thus, the result is those keen on analyzing mathematical expressions closely may enjoy the journey as much as the destination! If you work through the steps properly, arriving at the limit will just be another fun puzzle in your mathematical toolkit. Make sure to carefully follow through every substitution and simplification—you wouldn’t want to misplace a negative sign or end up squaring something you intended to merely evaluate!