Pregunta
upstudy study bank question image url

Example 6 i) Sketch the curve \( y=(x-3)^{2} \) and the line \( y=x-1 \) on the same axis. ii) Calculate the area of the finite region enclosed by the curve \( y=(x-3)^{2} \) and the line \( y=x-1 \).

Ask by Simmons May. in Ghana
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area between the curves \( y = (x - 3)^2 \) and \( y = x - 1 \) from \( x = 2 \) to \( x = 5 \) is \( \frac{9}{2} \) square units.

Solución

Certainly! Let's tackle **Example 6** step by step. ## Part i) Sketching the Curves ### 1. **Parabola: \( y = (x - 3)^2 \)** - **Vertex:** The parabola \( y = (x - 3)^2 \) opens upwards with its vertex at \( (3, 0) \). - **Symmetry:** It is symmetric about the vertical line \( x = 3 \). - **Key Points:** - When \( x = 2 \), \( y = (2-3)^2 = 1 \) → Point \( (2, 1) \) - When \( x = 4 \), \( y = (4-3)^2 = 1 \) → Point \( (4, 1) \) - When \( x = 1 \), \( y = (1-3)^2 = 4 \) → Point \( (1, 4) \) - When \( x = 5 \), \( y = (5-3)^2 = 4 \) → Point \( (5, 4) \) ### 2. **Line: \( y = x - 1 \)** - **Slope:** The line has a slope of 1. - **Y-intercept:** It crosses the y-axis at \( (0, -1) \). - **Key Points:** - When \( x = 1 \), \( y = 0 \) → Point \( (1, 0) \) - When \( x = 2 \), \( y = 1 \) → Point \( (2, 1) \) - When \( x = 3 \), \( y = 2 \) → Point \( (3, 2) \) - When \( x = 5 \), \( y = 4 \) → Point \( (5, 4) \) ### 3. **Intersection Points** To find where the two curves intersect: \[ (x - 3)^2 = x - 1 \\ x^2 - 6x + 9 = x - 1 \\ x^2 - 7x + 10 = 0 \\ (x - 2)(x - 5) = 0 \\ x = 2 \quad \text{or} \quad x = 5 \] - **Intersection Points:** \( (2, 1) \) and \( (5, 4) \) ### 4. **Plotting the Graphs** Using the key points and intersection points, plot both the parabola and the line on the same coordinate system. The parabola will open upwards with its vertex at \( (3, 0) \), and the line will pass through \( (0, -1) \) and intersect the parabola at \( (2, 1) \) and \( (5, 4) \). **[Since I can't provide a visual sketch here, please graph the points and curves as described to visualize the intersection.]** ## Part ii) Calculating the Area of the Enclosed Region ### 1. **Setting Up the Integral** The area between the two curves from \( x = 2 \) to \( x = 5 \) is given by: \[ \text{Area} = \int_{2}^{5} \left[ \text{Top Function} - \text{Bottom Function} \right] dx \] From the sketch and intersection analysis, the **line \( y = x - 1 \)** is above the **parabola \( y = (x - 3)^2 \)** in this interval. ### 2. **Expressing the Difference of Functions** \[ \text{Top Function} - \text{Bottom Function} = (x - 1) - (x - 3)^2 \] Simplify the expression: \[ (x - 1) - (x^2 - 6x + 9) = -x^2 + 7x - 10 \] ### 3. **Integrating** \[ \text{Area} = \int_{2}^{5} (-x^2 + 7x - 10) \, dx \] Find the antiderivative: \[ \int (-x^2 + 7x - 10) \, dx = -\frac{x^3}{3} + \frac{7x^2}{2} - 10x \] Evaluate from \( x = 2 \) to \( x = 5 \): \[ \left[ -\frac{5^3}{3} + \frac{7 \cdot 5^2}{2} - 10 \cdot 5 \right] - \left[ -\frac{2^3}{3} + \frac{7 \cdot 2^2}{2} - 10 \cdot 2 \right] \] Compute each part: \[ \left[ -\frac{125}{3} + \frac{175}{2} - 50 \right] - \left[ -\frac{8}{3} + 14 - 20 \right] \] Convert to a common denominator (6): \[ \left[ -\frac{250}{6} + \frac{525}{6} - \frac{300}{6} \right] - \left[ -\frac{16}{6} + \frac{84}{6} - \frac{120}{6} \right] \] Simplify: \[ \left[ \frac{-250 + 525 - 300}{6} \right] - \left[ \frac{-16 + 84 - 120}{6} \right] = \frac{-25}{6} - \left( \frac{-52}{6} \right) = \frac{-25 + 52}{6} = \frac{27}{6} = \frac{9}{2} \] ### 4. **Final Answer** \[ \text{Area} = \frac{9}{2} \text{ square units} \] --- **Summary:** - **i)** The parabola \( y = (x - 3)^2 \) and the line \( y = x - 1 \) intersect at points \( (2, 1) \) and \( (5, 4) \). The line lies above the parabola between these points. - **ii)** The area of the enclosed region is \( \frac{9}{2} \) square units.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To sketch the curve \( y=(x-3)^{2} \), you first recognize it as a parabola opening upwards with its vertex at the point (3,0). The line \( y=x-1 \) has a slope of 1 and a y-intercept of -1. When plotting these on the same axis, you’ll see the parabola intersecting the line. To find the area of the region enclosed by the two graphs, you first need to find their points of intersection. Set \( (x-3)^{2} = x-1 \) and solve for \( x \). After calculating, you’ll find the roots \( x = 2 \) and \( x = 4 \). The area can be found by integrating the difference of the functions between these bounds: \[ \text{Area} = \int_{2}^{4} \left((x-1) - (x-3)^{2}\right) dx. \] Evaluating the integral, you will determine the area of the finite region. Happy calculating!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad