Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { f ( x ) = \left\{ \begin{array} { l r } { 2 x ^ { 3 } - 1 , } & { x < 1 } \\ { 3 , } & { 1 \leq x < 5 } \\ { | x - 2 | , } & { x \geq 5 } \end{array} \right.} \\ { = - 1 \quad | f ( 4 ) = 5 } \end{array} \right. \)

Ask by Chan Hodgson. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = 0 \) is the solution for \( f(x) = -1 \). However, \( f(4) = 3 \), not 5, based on the given function.

Solución

Let's analyze the piecewise function you've provided and examine the conditions you've mentioned. ### Given Function: \[ f(x) = \begin{cases} 2x^3 - 1, & \text{if } x < 1 \\ 3, & \text{if } 1 \leq x < 5 \\ |x - 2|, & \text{if } x \geq 5 \end{cases} \] ### Conditions: 1. \( f(x) = -1 \) 2. \( f(4) = 5 \) Let's address each condition separately. --- ### 1. Solving \( f(x) = -1 \) We need to find all \( x \) such that \( f(x) = -1 \). **Case 1: \( x < 1 \)** \[ f(x) = 2x^3 - 1 = -1 \\ 2x^3 = 0 \\ x^3 = 0 \\ x = 0 \] **Solution:** \( x = 0 \) **Case 2: \( 1 \leq x < 5 \)** \[ f(x) = 3 \] Since \( 3 \neq -1 \), there are no solutions in this interval. **Case 3: \( x \geq 5 \)** \[ f(x) = |x - 2| = -1 \] The absolute value \( |x - 2| \) is always non-negative, so it cannot equal \(-1\). **Conclusion for \( f(x) = -1 \):** \[ \boxed{x = 0} \] --- ### 2. Evaluating \( f(4) = 5 \) Let's compute \( f(4) \) using the given piecewise function. **Determine the Interval for \( x = 4 \):** \[ 1 \leq 4 < 5 \] So, we use: \[ f(4) = 3 \] **Given Condition:** \[ f(4) = 5 \] **Analysis:** According to the piecewise definition, \( f(4) = 3 \). However, you've stated that \( f(4) = 5 \). This presents a contradiction because, within the interval \( 1 \leq x < 5 \), \( f(x) \) is consistently defined as \( 3 \). **Possible Resolutions:** 1. **Typographical Error:** Ensure that the function definition or the condition \( f(4) = 5 \) is correctly stated. There might be a typo in either the function or the condition. 2. **Function Adjustment:** If \( f(4) = 5 \) is a necessary condition, you might need to redefine the function to accommodate this. For example, you could modify the piecewise definition to include an exception at \( x = 4 \): \[ f(x) = \begin{cases} 2x^3 - 1, & \text{if } x < 1 \\ \begin{cases} 5, & \text{if } x = 4 \\ 3, & \text{otherwise} \end{cases}, & \text{if } 1 \leq x < 5 \\ |x - 2|, & \text{if } x \geq 5 \end{cases} \] 3. **Clarify Requirements:** If there's additional context or constraints, please provide them so that a more accurate solution can be formulated. --- ### Summary - **Solution to \( f(x) = -1 \):** \( x = 0 \) - **Issue with \( f(4) = 5 \):** Contradicts the given function definition where \( f(4) = 3 \). Consider verifying the function or the condition. If you intended something different or need further assistance with adjustments, please provide additional details!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The function \( f(x) \) has an interesting piecewise structure that showcases different behaviors in various intervals of \( x \). Historically, piecewise functions gained popularity in calculus for modeling situations where a quantity behaves differently over different ranges. For example, in economics, piecewise functions are often used to represent cost structures that change based on the quantity produced or sold, encapsulating different pricing strategies effectively. In practice, when analyzing piecewise functions like this one, a common mistake is to overlook the boundaries where the definitions change. Make sure to evaluate the value of \( f(x) \) at those critical points. Here, for instance, at \( x = 1 \) and \( x = 5 \), the value of the function changes. Always check the thresholds properly, as they play a crucial role in ensuring you're applying the correct segment of the function to solve for unknowns accurately!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad