Pregunta
upstudy study bank question image url

Which exponential functions have been simplified correctly? Check all that apply. \( f(x)=5 \sqrt[3]{16}^{x}=5(2 \sqrt[3]{2})^{x} \) \( f(x)=2.3(8)^{\frac{1}{2} x}=2.3(4)^{x} \) \( f(x)=81^{\frac{x}{4}}=3^{x} \) \( f(x)=\frac{3}{4} \sqrt{27^{x}}=\frac{3}{4}(3 \sqrt{3})^{x} \) \( f(x)=(24)^{\frac{1}{3} x}=2(\sqrt[3]{3})^{x} \)

Ask by Nunez Wood. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correctly simplified exponential functions are the first, third, and fourth options.

Solución

Let's analyze each exponential function to determine if it has been simplified correctly. 1. **\( f(x)=5 \sqrt[3]{16}^{x}=5(2 \sqrt[3]{2})^{x} \)** - **Original Expression:** \( 5 \cdot 16^{\frac{1}{3}x} \) - **Simplification:** \( 5 \cdot (2 \cdot 2^{\frac{1}{3}})^x = 5 \cdot (2^{\frac{4}{3}})^x = 5 \cdot 2^{\frac{4}{3}x} \) Since \( 16^{\frac{1}{3}} = 2 \sqrt[3]{2} \), the simplification is **correct**. 2. **\( f(x)=2.3(8)^{\frac{1}{2} x}=2.3(4)^{x} \)** - **Original Expression:** \( 2.3 \cdot 8^{\frac{1}{2}x} = 2.3 \cdot (2 \sqrt{2})^x \) - **Simplification:** \( 2.3 \cdot 4^x \) However, \( 8^{\frac{1}{2}} = 2 \sqrt{2} \), not \( 4 \). Therefore, the simplification is **incorrect**. 3. **\( f(x)=81^{\frac{x}{4}}=3^{x} \)** - **Original Expression:** \( 81^{\frac{x}{4}} = (3^4)^{\frac{x}{4}} = 3^x \) The simplification is **correct**. 4. **\( f(x)=\frac{3}{4} \sqrt{27^{x}}=\frac{3}{4}(3 \sqrt{3})^{x} \)** - **Original Expression:** \( \frac{3}{4} \cdot 27^{\frac{x}{2}} = \frac{3}{4} \cdot (3 \sqrt{3})^x \) Since \( 27^{\frac{1}{2}} = 3 \sqrt{3} \), the simplification is **correct**. 5. **\( f(x)=(24)^{\frac{1}{3} x}=2(\sqrt[3]{3})^{x} \)** - **Original Expression:** \( 24^{\frac{x}{3}} = (2^3 \cdot 3)^{\frac{x}{3}} = 2^x \cdot 3^{\frac{x}{3}} \) - **Simplification:** \( 2 \cdot 3^{\frac{x}{3}} \) These are not equivalent unless \( x = 1 \). Therefore, the simplification is **incorrect**. **In summary, the correctly simplified exponential functions are the first, third, and fourth options.** **Answer:** All except the second and fifth functions are simplified correctly.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let’s break down the options step by step to see which functions have been simplified correctly! For the first function: \( f(x)=5 \sqrt[3]{16}^{x}=5(2 \sqrt[3]{2})^{x} \) is actually not correct since \( \sqrt[3]{16} \neq 2 \sqrt[3]{2} \). The second function \( f(x)=2.3(8)^{\frac{1}{2} x}=2.3(4)^{x} \) is incorrect as \( (8)^{\frac{1}{2} x} \) simplifies to \( (2^3)^{\frac{1}{2} x} = (2^{1.5})^x \) which does not equal \( (4)^x \). The third option \( f(x)=81^{\frac{x}{4}}=3^{x} \) is also incorrect, as \( 81^{\frac{x}{4}} \) simplifies to \( (3^4)^{\frac{x}{4}} = 3^x \) and not \( 3^x \). For the fourth option \( f(x)=\frac{3}{4} \sqrt{27^{x}}=\frac{3}{4}(3 \sqrt{3})^{x} \), this is correct because \( \sqrt{27^{x}} = (27^{\frac{1}{2}})^x = (3^{\frac{3}{2}})^x = 3^{\frac{3}{2}x} = 3^{x} \cdot \sqrt{3} \), which fits. Finally, \( f(x)=(24)^{\frac{1}{3} x}=2(\sqrt[3]{3})^{x} \) doesn’t hold since \( (24)^{\frac{1}{3} x} = (2^3 \cdot 3)^{\frac{1}{3} x} = 2^x \cdot 3^{\frac{1}{3} x} \). Therefore, it’s not correct either. In short, only the fourth function is simplified correctly while the others have mistakes in their simplifications. Happy simplifying!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad