Solve the equation \( 4 \cos x+2=3 \) for \( 0^{\circ} \leq x \leq 360^{\circ} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the equation \( 4 \cos x + 2 = 3 \), we start by isolating the cosine term. 1. Subtract 2 from both sides: \[ 4 \cos x = 3 - 2 \] \[ 4 \cos x = 1 \] 2. Divide both sides by 4: \[ \cos x = \frac{1}{4} \] Now, we need to find the angles \( x \) in the range \( 0^{\circ} \leq x \leq 360^{\circ} \) where the cosine value is \( \frac{1}{4} \). 3. Using a calculator or inverse cosine function: \[ x = \cos^{-1}\left(\frac{1}{4}\right) \approx 75.5^{\circ} \] Since the cosine function is positive in both the first and fourth quadrants, we find the second solution by subtracting \( 75.5^{\circ} \) from \( 360^{\circ} \): 4. Find the second angle: \[ x_2 = 360^{\circ} - 75.5^{\circ} \approx 284.5^{\circ} \] Thus, the solutions to the equation \( 4 \cos x + 2 = 3 \) within the interval \( 0^{\circ} \leq x \leq 360^{\circ} \) are approximately: \[ x \approx 75.5^{\circ} \quad \text{and} \quad x \approx 284.5^{\circ} \]