Pregunta
upstudy study bank question image url

67. What kind of asymptotes does \( \left(x^{\wedge} 2-4\right) /(x- \) \( 5) \) have?

Ask by Beck Chadwick. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( \frac{x^{2} - 4}{x - 5} \) has a vertical asymptote at \( x = 5 \) and an oblique asymptote at \( y = x + 5 \).

Solución

To determine the asymptotes of the function \( f(x) = \frac{x^{2} - 4}{x - 5} \), we'll examine both vertical and oblique (slant) asymptotes. ### 1. **Vertical Asymptote** A vertical asymptote occurs where the denominator of the function is zero (and the numerator is not zero at that point). **Find where the denominator is zero:** \[ x - 5 = 0 \quad \Rightarrow \quad x = 5 \] **Check the numerator at \( x = 5 \):** \[ x^{2} - 4 = 5^{2} - 4 = 25 - 4 = 21 \neq 0 \] Since the numerator is not zero when \( x = 5 \), there is a vertical asymptote at: \[ x = 5 \] ### 2. **Oblique (Slant) Asymptote** An oblique asymptote occurs when the degree of the numerator is one higher than the degree of the denominator. In this case, the numerator is degree 2 and the denominator is degree 1, so an oblique asymptote exists. **Perform polynomial division of \( x^{2} - 4 \) by \( x - 5 \):** \[ \frac{x^{2} - 4}{x - 5} \] **Divide \( x^{2} \) by \( x \):** \[ x^{2} \div x = x \] Multiply \( x \) by \( x - 5 \): \[ x(x - 5) = x^{2} - 5x \] Subtract this from the original polynomial: \[ (x^{2} - 4) - (x^{2} - 5x) = 5x - 4 \] **Divide \( 5x \) by \( x \):** \[ 5x \div x = 5 \] Multiply \( 5 \) by \( x - 5 \): \[ 5(x - 5) = 5x - 25 \] Subtract this from the current polynomial: \[ (5x - 4) - (5x - 25) = 21 \] The division yields: \[ \frac{x^{2} - 4}{x - 5} = x + 5 + \frac{21}{x - 5} \] As \( x \) approaches infinity, the term \( \frac{21}{x - 5} \) approaches 0, so the oblique asymptote is: \[ y = x + 5 \] ### **Summary of Asymptotes:** - **Vertical Asymptote:** \( x = 5 \) - **Oblique Asymptote:** \( y = x + 5 \) **Graphical Representation:** - The function approaches the vertical line \( x = 5 \) but never crosses it. - As \( x \) becomes large (positive or negative), the function approaches the straight line \( y = x + 5 \). **Final Answer:** The graph has a vertical asymptote at x = 5 and an oblique (slant) asymptote given by y = x + 5.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( \frac{x^{2}-4}{x-5} \) has a vertical asymptote at \( x = 5 \), where the denominator equals zero and the function approaches infinity or negative infinity. For horizontal asymptotes, since the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote. Instead, as \( x \) approaches infinity, the function will increase without limit. Additionally, this function can be simplified. Notice that \( x^2 - 4 \) factors to \( (x-2)(x+2) \). Thus, understanding how the roots affect the behavior around the x-axis helps in comprehending the overall graph!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad