Pregunta
upstudy study bank question image url

1) \( (x-2)^{2}+(y-5)^{2}=7^{2} \)

Ask by Bond Weston. in Uzbekistan
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation \( (x-2)^{2}+(y-5)^{2}=7^{2} \) represents a circle with center at \( (2, 5) \) and a radius of \( 7 \).

Solución

The given equation \( (x-2)^{2}+(y-5)^{2}=7^{2} \) represents a circle in the Cartesian coordinate system. ### Known Conditions: - The center of the circle is at the point \( (2, 5) \). - The radius of the circle is \( 7 \). ### Step-by-Step Explanation: 1. **Identify the center and radius**: - The general form of a circle's equation is \( (x-h)^{2} + (y-k)^{2} = r^{2} \), where \( (h, k) \) is the center and \( r \) is the radius. - From the equation, we can see that: - \( h = 2 \) - \( k = 5 \) - \( r = 7 \) 2. **Write the center and radius**: - Center: \( (2, 5) \) - Radius: \( 7 \) ### Conclusion: The circle has a center at \( (2, 5) \) and a radius of \( 7 \). If you need further analysis or specific calculations related to this circle, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the equation you've written represents a circle in the coordinate plane? The center of this circle is located at the point (2, 5), and it has a radius of 7. Circles like this one have been studied for centuries, with the earliest known work dating back to ancient Greece, specifically by mathematicians like Euclid! Now, if you're looking to put this equation into practice, you can easily find points that lie on the circle by using the Pythagorean theorem! For example, if you pick an angle or a direction (like moving up or down from the center), you can add or subtract the radius to find points. Just remember: moving right from the center adds to the x-coordinate, and moving up adds to the y-coordinate!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad