\begin{tabular}{l} If \( n \) is an integer, \( n \cdot 180^{\circ} \) represents an integer multiple of \( 180^{\circ} \) and \( (2 n+1) \cdot 90^{\circ} \) represents an odd integer multiple of \( 90^{\circ} \), and so on, Determine whether the expression is equal to \( 0,1,-1 \), or is \\ undefined. \\ \( \tan \left[(2 n+1) \cdot 90^{\circ}\right] \) \\ \( \tan \left[(2 n+1) \cdot 90^{\circ}\right] \) \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To determine the value of \( \tan \left[(2n+1) \cdot 90^\circ\right] \), we need to evaluate the angle. The expression \( (2n+1) \) signifies an odd integer. When we multiply an odd integer by \( 90^\circ \), we get angles such as \( 90^\circ, 270^\circ, 450^\circ \), and so on. Now, we can analyze the tangent function at these angles: - \( \tan(90^\circ) \) is undefined. - \( \tan(270^\circ) \) is also undefined. - Adding multiples of \( 360^\circ \) (full circles) to these angles won’t change the fact that tangent is undefined. Thus, \( \tan \left[(2n+1) \cdot 90^\circ\right] \) is undefined for any integer \( n \).