Pregunta
upstudy study bank question image url

Ore On Functions and Craphs Determine whether the function is even, odd, or neither. Then determine whether the function's graph is symmetric with respect to the y-axis, the origin, or neither. \( h(x)=3 x^{2}-x^{10} \) Determine whether the function is even, odd, or neither. Choose the correct answer below. odd \( 10,1.3 .41 \) neither even

Ask by Ross Carroll. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( h(x) = 3x^{2} - x^{10} \) is **even** and its graph is symmetric with respect to the **y-axis**.

Solución

To determine whether the function \( h(x) = 3x^{2} - x^{10} \) is **even**, **odd**, or **neither**, and to identify its symmetry, follow these steps: ### 1. **Check for Evenness** A function \( f(x) \) is **even** if: \[ f(-x) = f(x) \] Compute \( h(-x) \): \[ h(-x) = 3(-x)^{2} - (-x)^{10} = 3x^{2} - x^{10} \] Notice that: \[ h(-x) = 3x^{2} - x^{10} = h(x) \] Since \( h(-x) = h(x) \), the function is **even**. ### 2. **Check for Oddness** A function \( f(x) \) is **odd** if: \[ f(-x) = -f(x) \] From the above calculation: \[ h(-x) = h(x) \neq -h(x) \] Thus, the function is **not odd**. ### 3. **Determine Symmetry** Since the function is **even**, its graph is **symmetric with respect to the y-axis**. ### **Conclusion** - **Function Classification:** **Even** - **Graph Symmetry:** Symmetric with respect to the **y-axis** **Answer:** **even**, and its graph is symmetric with respect to the y‑axis.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine if the function \( h(x) = 3x^{2} - x^{10} \) is even, odd, or neither, we evaluate \( h(-x) \). Calculating, we find: \( h(-x) = 3(-x)^{2} - (-x)^{10} = 3x^{2} - x^{10} = h(x) \). Since \( h(-x) = h(x) \), the function is even. The symmetry in the graph of \( h(x) \) confirms this, as it's symmetric with respect to the y-axis. For a little fun, think of even functions as having a mirror-image buddy on the other side of the y-axis, while odd functions do a wild pirouette around the origin! In this case, our function is rock-solid in its evenness. By recognizing patterns in polynomial functions, you can quickly determine symmetry—if the powers of x in your function are all even, congrats, it’s even! If they're all odd, then it’s odd. Mixing them up? That’s neither!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad