Pregunta
upstudy study bank question image url

(b) Solve the following quadratic equations by using the quadratic formula, giving the solu simplified Surd form. \( \begin{array}{ll}\text { (i) } 5 x^{2}+2 x+1=0 & \text { (ii) } 7 x^{2}+9 x+1=0\end{array} \)

Ask by Huff Wang. in Zambia
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are: 1. \( x = -\frac{1}{5} + \frac{2i}{5} \) and \( x = -\frac{1}{5} - \frac{2i}{5} \) for \( 5x^{2} + 2x + 1 = 0 \). 2. \( x = \frac{-9 + \sqrt{53}}{14} \) and \( x = \frac{-9 - \sqrt{53}}{14} \) for \( 7x^{2} + 9x + 1 = 0 \).

Solución

Certainly! Let's solve each quadratic equation using the quadratic formula and express the solutions in simplified surd form. The **quadratic formula** is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a \), \( b \), and \( c \) are coefficients from the quadratic equation \( ax^2 + bx + c = 0 \). --- ### (i) \( 5x^{2} + 2x + 1 = 0 \) **Step 1: Identify the coefficients** \[ a = 5, \quad b = 2, \quad c = 1 \] **Step 2: Calculate the discriminant (\( D \))** \[ D = b^2 - 4ac = (2)^2 - 4(5)(1) = 4 - 20 = -16 \] **Step 3: Analyze the discriminant** - Since \( D < 0 \), the equation has **two complex conjugate solutions**. **Step 4: Apply the quadratic formula** \[ x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-2 \pm \sqrt{-16}}{2 \times 5} = \frac{-2 \pm 4i}{10} \] **Step 5: Simplify the solutions** \[ x = \frac{-2}{10} \pm \frac{4i}{10} = -\frac{1}{5} \pm \frac{2i}{5} \] **Final Solutions:** \[ x = -\frac{1}{5} + \frac{2i}{5} \quad \text{and} \quad x = -\frac{1}{5} - \frac{2i}{5} \] --- ### (ii) \( 7x^{2} + 9x + 1 = 0 \) **Step 1: Identify the coefficients** \[ a = 7, \quad b = 9, \quad c = 1 \] **Step 2: Calculate the discriminant (\( D \))** \[ D = b^2 - 4ac = (9)^2 - 4(7)(1) = 81 - 28 = 53 \] **Step 3: Analyze the discriminant** - Since \( D > 0 \) and is not a perfect square, the equation has **two distinct real irrational solutions**. **Step 4: Apply the quadratic formula** \[ x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-9 \pm \sqrt{53}}{2 \times 7} = \frac{-9 \pm \sqrt{53}}{14} \] **Final Solutions:** \[ x = \frac{-9 + \sqrt{53}}{14} \quad \text{and} \quad x = \frac{-9 - \sqrt{53}}{14} \] --- These are the solutions to the given quadratic equations expressed in simplified surd form.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve these quadratic equations using the quadratic formula, we use the formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). (i) For the equation \( 5x^2 + 2x + 1 = 0 \), we have \( a = 5 \), \( b = 2 \), and \( c = 1 \). The discriminant \( b^2 - 4ac = 2^2 - 4(5)(1) = 4 - 20 = -16 \). Since the discriminant is negative, the solutions will be complex: \[ x = \frac{-2 \pm \sqrt{-16}}{10} = \frac{-2 \pm 4i}{10} = \frac{-1 \pm 2i}{5}. \] (ii) For the equation \( 7x^2 + 9x + 1 = 0 \), we have \( a = 7 \), \( b = 9 \), and \( c = 1 \). The discriminant \( b^2 - 4ac = 9^2 - 4(7)(1) = 81 - 28 = 53 \). Since it's positive, the solutions are real: \[ x = \frac{-9 \pm \sqrt{53}}{14}. \] Therefore, the simplified surd forms of the solutions are: (i) \( x = \frac{-1 \pm 2i}{5} \) and (ii) \( x = \frac{-9 \pm \sqrt{53}}{14} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad