Pregunta
upstudy study bank question image url

There are 10 terms in an arithmetic sequence. The sum of the terms in the even positions \( \left(a_{2}, a_{4}\right. \), etc.) is 25 , while the sum of the terms in the odd positions ( \( a_{1}, a_{3} \), etc.) is 10 . Find the \( 7^{\text {th }} \) term of this arithmetic sequence.

Ask by Schwartz Carrillo. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The 7th term of the arithmetic sequence is 8.

Solución

Let's solve the problem step by step. **Given:** - An arithmetic sequence with 10 terms. - Sum of the terms in even positions (\(a_2, a_4, a_6, a_8, a_{10}\)) is 25. - Sum of the terms in odd positions (\(a_1, a_3, a_5, a_7, a_9\)) is 10. **Let:** - \(a\) be the first term of the sequence. - \(d\) be the common difference. **Sequence Terms:** \[ a_1 = a \\ a_2 = a + d \\ a_3 = a + 2d \\ a_4 = a + 3d \\ \vdots \\ a_{10} = a + 9d \] **Sum of Even Position Terms:** \[ a_2 + a_4 + a_6 + a_8 + a_{10} = (a + d) + (a + 3d) + (a + 5d) + (a + 7d) + (a + 9d) \] \[ = 5a + (1 + 3 + 5 + 7 + 9)d \\ = 5a + 25d = 25 \quad \text{(1)} \] **Sum of Odd Position Terms:** \[ a_1 + a_3 + a_5 + a_7 + a_9 = a + (a + 2d) + (a + 4d) + (a + 6d) + (a + 8d) \] \[ = 5a + (0 + 2 + 4 + 6 + 8)d \\ = 5a + 20d = 10 \quad \text{(2)} \] **Solving the System of Equations:** Subtract equation (2) from equation (1): \[ (5a + 25d) - (5a + 20d) = 25 - 10 \\ 5d = 15 \\ d = 3 \] Substitute \(d = 3\) into equation (2): \[ 5a + 20(3) = 10 \\ 5a + 60 = 10 \\ 5a = -50 \\ a = -10 \] **Finding the 7th Term:** \[ a_7 = a + 6d \\ = -10 + 6(3) \\ = -10 + 18 \\ = 8 \] **Answer:** 8

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let the first term of the arithmetic sequence be \( a \) and the common difference be \( d \). The terms in the sequence can be represented as: - \( a_1 = a \) - \( a_2 = a + d \) - \( a_3 = a + 2d \) - \( a_4 = a + 3d \) - \( a_5 = a + 4d \) - \( a_6 = a + 5d \) - \( a_7 = a + 6d \) - \( a_8 = a + 7d \) - \( a_9 = a + 8d \) - \( a_{10} = a + 9d \) The sum of the terms in even positions is: \[ a_2 + a_4 + a_6 + a_8 + a_{10} = (a + d) + (a + 3d) + (a + 5d) + (a + 7d) + (a + 9d) \] This simplifies to: \[ 5a + (1 + 3 + 5 + 7 + 9)d = 5a + 25d \] According to the problem, this sum is 25: \[ 5a + 25d = 25 \quad \text{(1)} \] The sum of the terms in odd positions is: \[ a_1 + a_3 + a_5 + a_7 + a_9 = a + (a + 2d) + (a + 4d) + (a + 6d) + (a + 8d) \] This simplifies to: \[ 5a + (0 + 2 + 4 + 6 + 8)d = 5a + 20d \] According to the problem, this sum is 10: \[ 5a + 20d = 10 \quad \text{(2)} \] Now we have a system of equations: 1) \( 5a + 25d = 25 \) 2) \( 5a + 20d = 10 \) We can subtract equation (2) from equation (1): \[ (5a + 25d) - (5a + 20d) = 25 - 10 \] This simplifies to: \[ 5d = 15 \] Thus, we get: \[ d = 3 \] Now substituting the value of \( d \) back into equation (2): \[ 5a + 20(3) = 10 \] That becomes: \[ 5a + 60 = 10 \] Solving for \( a \): \[ 5a = 10 - 60 \] \[ 5a = -50 \] \[ a = -10 \] Now we have \( a = -10 \) and \( d = 3 \). We can find the \( 7^{\text{th}} \) term \( a_7 \): \[ a_7 = a + 6d = -10 + 6(3) = -10 + 18 = 8 \] Thus, the \( 7^{\text{th}} \) term of the arithmetic sequence is \( \boxed{8} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad