Factorise the following sqares trinomials (a) \( 3 x^{2}-7 x-6 \) (b) \( 3 x^{2}-5 x+2 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To factor the trinomial \( 3x^2 - 7x - 6 \), we look for two numbers that multiply to \( 3 \times -6 = -18 \) and add to \( -7 \). The numbers are \( -9 \) and \( 2 \). Rewriting the middle term gives us \( 3x^2 - 9x + 2x - 6 \). Factoring by grouping, we get \( 3x(x - 3) + 2(x - 3) \), simplifying to \( (3x + 2)(x - 3) \). For \( 3x^2 - 5x + 2 \), we need two numbers that multiply to \( 3 \times 2 = 6 \) and add to \( -5 \). The numbers are \( -3 \) and \( -2 \). This allows us to rewrite as \( 3x^2 - 3x - 2x + 2 \). Factoring by grouping leads to \( 3x(x - 1) - 2(x - 1) \), simplifying to \( (3x - 2)(x - 1) \).