Pregunta
upstudy study bank question image url

\( \begin{array}{l}\text { a } \\ \text { e the } \\ \text { why }\end{array} \left\lvert\, \begin{array}{l}\text { 9. A cone has a volume of } 942 \text { cubic inches } \\ \text { and a height of } 9 \text { inches. What is the radius of } \\ \text { the cone? Use } 3.14 \text { for pi. }\end{array}\right. \)

Ask by Barrett Reid. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The radius of the cone is 10 inches.

Solución

To find the radius of a cone given its volume and height, we can use the formula for the volume of a cone: \[ V = \frac{1}{3} \pi r^2 h \] Where: - \( V \) is the volume of the cone, - \( r \) is the radius of the base, - \( h \) is the height of the cone, - \( \pi \) is approximately 3.14. **Given:** - Volume (\( V \)) = 942 cubic inches - Height (\( h \)) = 9 inches - \( \pi \) = 3.14 **Step-by-Step Solution:** 1. **Plug in the known values into the volume formula:** \[ 942 = \frac{1}{3} \times 3.14 \times r^2 \times 9 \] 2. **Simplify the equation:** First, multiply \( \frac{1}{3} \) and 9: \[ \frac{1}{3} \times 9 = 3 \] Now the equation becomes: \[ 942 = 3 \times 3.14 \times r^2 \] 3. **Multiply 3 and 3.14:** \[ 3 \times 3.14 = 9.42 \] Now the equation is: \[ 942 = 9.42 \times r^2 \] 4. **Solve for \( r^2 \):** \[ r^2 = \frac{942}{9.42} = 100 \] 5. **Find \( r \) by taking the square root of both sides:** \[ r = \sqrt{100} = 10 \] **Answer:** The radius of the cone is **10 inches**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the radius of the cone, we can use the formula for the volume of a cone, which is given by: \[ V = \frac{1}{3} \pi r^2 h \] We know the volume \( V = 942 \) cubic inches and the height \( h = 9 \) inches. Plugging in these values and using \( \pi \approx 3.14 \): \[ 942 = \frac{1}{3} \times 3.14 \times r^2 \times 9 \] Solving for \( r \): 1. Calculate the right side: \[ \frac{1}{3} \times 3.14 \times 9 = 9.42 \] 2. Now set up the equation: \[ 942 = 9.42 r^2 \] 3. Rearranging gives us: \[ r^2 = \frac{942}{9.42} \approx 100 \] 4. Taking the square root of both sides: \[ r \approx 10 \] So, the radius of the cone is approximately \( 10 \) inches! --- In ancient Egypt, pyramids were built with remarkable accuracy, thanks in part to their understanding of geometry. The concept of volume, much like that of a cone, formed the basis of their construction techniques. They even had a special relationship with the number 3.14, which we now use as pi, showing how early civilizations grappled with mathematical concepts long before calculators! In modern industries, understanding shapes and their volumes is crucial! Architects, engineers, and manufacturers need this knowledge to design anything from sleek, space-saving furniture to towering skyscrapers. For example, in designing water tanks shaped like cones, knowing the volume helps determine how much water can be stored. So, whether it’s engineering marvels or everyday objects, this math is ever-present!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad