Pregunta
upstudy study bank question image url

Approximate the change in the volume of a night circular cylinder of foxed radius \( \mathrm{r}=21 \mathrm{~cm} \) when its height decreases from \( \mathrm{h}=12 \mathrm{~cm} \) to \( \mathrm{h}=11.9 \mathrm{~cm}\left(\mathrm{~V}(\mathrm{~h})=\pi^{2} \mathrm{~h}\right) \). Use a linear approximation.

Ask by Deleon Franklin. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The approximate change in the volume is about \( -138.54 \, \text{cm}^3 \).

Solución

Given: - The radius of the circular cylinder is fixed at \( r = 21 \, \text{cm} \). - The height of the cylinder decreases from \( h = 12 \, \text{cm} \) to \( h = 11.9 \, \text{cm} \). - The volume of the cylinder is given by the formula \( V(h) = \pi r^2 h \). To approximate the change in the volume of the cylinder using a linear approximation, we need to find the derivative of the volume function with respect to the height and then use it to approximate the change in volume. 1. Find the derivative of the volume function with respect to the height: \[ \frac{dV}{dh} = \frac{d}{dh}(\pi r^2 h) = \pi r^2 \] 2. Use the linear approximation formula to approximate the change in volume: \[ \Delta V \approx \frac{dV}{dh} \cdot \Delta h \] Substitute the values of \( r \), \( h \), and \( \Delta h \) into the formula to find the approximate change in volume. Calculate the value by following steps: - step0: Calculate: \(\pi \times 21^{2}\left(11.9-12\right)\) - step1: Subtract the numbers: \(\pi \times 21^{2}\left(-0.1\right)\) - step2: Rewrite the expression: \(-\pi \times 21^{2}\times 0.1\) - step3: Multiply the terms: \(-44.1\pi \) - step4: Simplify: \(-138.544236\) The approximate change in the volume of the night circular cylinder when its height decreases from \( h = 12 \, \text{cm} \) to \( h = 11.9 \, \text{cm} \) is approximately \( -138.544236 \, \text{cm}^3 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To approximate the change in volume, we'll use the formula for the volume of a cylinder, \( V(h) = \pi r^2 h \). Since the radius is fixed at \( r = 21 \, \text{cm} \), the volume can be simplified to \( V(h) = \pi (21)^2 h = 441\pi h \). Now, we want to find how the volume changes when height \( h \) decreases from \( 12 \, \text{cm} \) to \( 11.9 \, \text{cm} \). The derivative of the volume with respect to height is: \[ \frac{dV}{dh} = 441\pi. \] Using linear approximation, the change in volume \( dV \) when \( h \) changes by \( dh = -0.1 \, \text{cm} \) is given by: \[ dV \approx \frac{dV}{dh} \cdot dh = 441\pi \cdot (-0.1) = -44.1\pi \, \text{cm}^3. \] Therefore, the approximate change in volume as the height decreases from \( 12 \, \text{cm} \) to \( 11.9 \, \text{cm} \) is about \( -44.1\pi \, \text{cm}^3 \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad