Pregunta
upstudy study bank question image url

com/app/student/3694486/26545770/79af1c669f0ceba6c9bafda2fd1ababo Intro to Proof I Scho.. TypingTest.com-C... Westfield High Scho_ Do Now \( 9 / 21-9 / 22 \) From his eye, which stands 1.55 meters above the ground, Jaxon measures the angle of elevation to the top of a prominent skyscraper to be \( 67^{\circ} \). If he is standing at a horizontal distance of 266 meters from the base of the skyscraper, what is the height of the skyscraper? Round your answer to the nearest tenth of a meter if necessary. \( \vdots \)

Ask by Mejia Mullins. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The skyscraper is approximately 628.2 meters tall.

Solución

To determine the height of the skyscraper, we can use trigonometric relationships involving right triangles. Here's a step-by-step solution: ### **Given:** - **Height of Jaxon's eye above the ground:** \( 1.55 \) meters - **Horizontal distance from the base of the skyscraper:** \( 266 \) meters - **Angle of elevation to the top of the skyscraper:** \( 67^\circ \) ### **Objective:** Find the total height of the skyscraper. ### **Approach:** 1. **Visual Representation:** Imagine a right triangle where: - The **adjacent side** (base) is the horizontal distance from Jaxon to the skyscraper: \( 266 \) meters. - The **opposite side** is the difference between the skyscraper's height (\( H \)) and Jaxon's eye level (\( 1.55 \) meters). - The **angle of elevation** is \( 67^\circ \). 2. **Trigonometric Relationship:** The tangent of an angle in a right triangle is the ratio of the opposite side to the adjacent side: \[ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} \] Plugging in the known values: \[ \tan(67^\circ) = \frac{H - 1.55}{266} \] 3. **Solving for \( H \):** Rearrange the equation to solve for \( H \): \[ H - 1.55 = 266 \times \tan(67^\circ) \] \[ H = 266 \times \tan(67^\circ) + 1.55 \] 4. **Calculating \( \tan(67^\circ) \):** Using a calculator: \[ \tan(67^\circ) \approx 2.35585 \] 5. **Plugging in the Values:** \[ H = 266 \times 2.35585 + 1.55 \] \[ H \approx 626.6551 + 1.55 \] \[ H \approx 628.2051 \text{ meters} \] 6. **Rounding the Answer:** Rounding to the nearest tenth of a meter: \[ H \approx 628.2 \text{ meters} \] ### **Answer:** The height of the skyscraper is approximately **628.2 meters**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the height of the skyscraper, we can use the tangent function from trigonometry, which relates the angle of elevation to the height and distance. The formula is: \[\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}\] In this case, \(\theta = 67^{\circ}\), the opposite side is the height of the skyscraper minus Jaxon’s eye level (1.55 m), and the adjacent side is the distance from the skyscraper (266 m). Rearranging gives us height = \( \tan(67^{\circ}) \times 266 + 1.55 \) which you can calculate to find the final height. After doing the calculations, the height of the skyscraper would come out to be approximately 325.4 meters when rounded to the nearest tenth!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad