Pregunta
upstudy study bank question image url

If you flip two coins 64 times, what is the best prediction possible for the number of times both coins will land on heads? times

Ask by Howell Peterson. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The best prediction is that both coins will land on heads 16 times out of 64 flips.

Solución

To predict the number of times both coins will land on heads when flipping two coins 64 times, we can follow these steps: 1. **Determine the probability of both coins landing on heads in a single flip.** - When flipping two coins, the possible outcomes are: HH (both heads), HT (heads and tails), TH (tails and heads), TT (both tails). - There are 4 possible outcomes, and only 1 of them is HH. - Therefore, the probability \( P \) of both coins landing on heads in one flip is: \[ P(HH) = \frac{1}{4} \] 2. **Calculate the expected number of times both coins will land on heads in 64 flips.** - The expected value \( E \) can be calculated by multiplying the probability of both coins landing on heads by the number of flips: \[ E = P(HH) \times \text{Number of flips} = \frac{1}{4} \times 64 \] Now, let's perform the calculation for the expected value. \[ E = \frac{1}{4} \times 64 = 16 \] Thus, the best prediction for the number of times both coins will land on heads when flipping two coins 64 times is **16 times**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When flipping two coins, the possible outcomes are HH (both heads), HT (heads-tails), TH (tails-heads), and TT (both tails). Each outcome has an equal probability of 1/4. Since you flip the coins 64 times, you can calculate the expected number of times both coins will land on heads by multiplying the probability of HH by the total flips: \(64 \times \frac{1}{4} = 16\). So, the best prediction for the number of times both coins will land on heads is 16 times. On that note, keep in mind that while probabilities give a good estimate of what to expect, variability can still occur! Each flip is independent, which means that you might get a bit more or less than 16 due to random chance—it’s the thrill of probability!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad