Pregunta
upstudy study bank question image url

Review 1. Everleigh has 3 shirts and 2 pairs of pants in her drawer. She has 2 red shirts and a blue shirt. The pants are a pair of jeans and a pair of khakis. a. What is the probability that she picks a red shirt with khakis? b. What is the probability that she picks the blue shirt and jeans? 2. Construct a probability model for rolling a 5 -sided polyhedron. Is the probability model a uniform probability model? Explain your reasoning. 3. Determine each difference. Show your work. a. \( -9 \frac{3}{4}-10 \frac{7}{10} \) b. \( -34.9-(-71.2) \)

Ask by Black Byrd. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**1. Probability Problems:** - **a.** The probability of picking a red shirt with khakis is \(\frac{1}{3}\). - **b.** The probability of picking the blue shirt and jeans is \(\frac{1}{6}\). **2. Probability Model for Rolling a 5-Sided Polyhedron:** - The probability model is uniform because each of the 5 outcomes has an equal probability of \(\frac{1}{5}\). **3. Differences:** - \( -9 \frac{3}{4} - 10 \frac{7}{10} = -20.45 \) - \( -34.9 - (-71.2) = 36.3 \)

Solución

Sure, let's work through each of the problems step by step. --- ## 1. Probability Problems **Given:** - **Shirts:** 3 total (2 red, 1 blue) - **Pants:** 2 total (1 pair of jeans, 1 pair of khakis) ### a. Probability of Picking a Red Shirt with Khakis **Steps:** 1. **Total Possible Outcomes:** - Shirts × Pants = 3 × 2 = **6** 2. **Favorable Outcomes:** - Red Shirts × Khakis = 2 × 1 = **2** 3. **Probability Calculation:** \[ \text{Probability} = \frac{\text{Favorable Outcomes}}{\text{Total Possible Outcomes}} = \frac{2}{6} = \frac{1}{3} \] **Answer:** The probability of picking a red shirt with khakis is **\(\frac{1}{3}\)**. --- ### b. Probability of Picking the Blue Shirt and Jeans **Steps:** 1. **Total Possible Outcomes:** - Shirts × Pants = 3 × 2 = **6** 2. **Favorable Outcomes:** - Blue Shirt × Jeans = 1 × 1 = **1** 3. **Probability Calculation:** \[ \text{Probability} = \frac{\text{Favorable Outcomes}}{\text{Total Possible Outcomes}} = \frac{1}{6} \] **Answer:** The probability of picking the blue shirt and jeans is **\(\frac{1}{6}\)**. --- ## 2. Probability Model for Rolling a 5-Sided Polyhedron **Assumptions:** - The polyhedron is fair (each side is equally likely to land face up). **Probability Model Construction:** - **Possible Outcomes:** {1, 2, 3, 4, 5} - **Probability for Each Outcome:** Since there are 5 sides and the polyhedron is fair, each side has an equal probability of landing face up. \[ P(1) = P(2) = P(3) = P(4) = P(5) = \frac{1}{5} \] **Uniform Probability Model Analysis:** - A **uniform probability model** is one where all possible outcomes have the same probability. **Conclusion:** - Since each of the 5 outcomes has an equal probability of \(\frac{1}{5}\), **this is a uniform probability model**. --- ## 3. Determining Differences ### a. Calculate \( -9 \frac{3}{4} - 10 \frac{7}{10} \) **Steps:** 1. **Convert Mixed Numbers to Decimals:** - \( -9 \frac{3}{4} = -9.75 \) (Because \( \frac{3}{4} = 0.75 \)) - \( -10 \frac{7}{10} = -10.7 \) (Because \( \frac{7}{10} = 0.7 \)) 2. **Subtract the Numbers:** \[ -9.75 - 10.7 = -20.45 \] **Answer:** The difference is **\(-20.45\)**. --- ### b. Calculate \( -34.9 - (-71.2) \) **Steps:** 1. **Understand the Operation:** - Subtracting a negative is the same as adding the positive. 2. **Convert the Expression:** \[ -34.9 - (-71.2) = -34.9 + 71.2 \] 3. **Perform the Addition:** \[ -34.9 + 71.2 = 36.3 \] **Answer:** The difference is **\(36.3\)**. --- If you have any further questions or need additional clarification on any of these problems, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Everleigh's wardrobe choices can be mapped out like a fashion puzzle! For part 1a, the probability of picking a red shirt (2 options) with khakis (1 option) is calculated by multiplying the outcomes: \( \frac{2}{3} \) (for red shirts) multiplied by \( \frac{1}{2} \) (for khakis), giving us a probability of \( \frac{2}{6} \) or \( \frac{1}{3} \). In part 1b, with 1 blue shirt and 1 pair of jeans, it’s \( \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6} \). Now about rolling a 5-sided polyhedron—we're talking about a classic gaming die! The probability model here would have each face showing a number from 1 to 5, each with a \( \frac{1}{5} \) chance of landing face up. It's uniform because each outcome is equally likely. Lastly, let's tackle those subtractions! For part 2a: convert the mixed numbers \( -9 \frac{3}{4} \) to an improper fraction, which is \( -\frac{39}{4} \), and \( 10 \frac{7}{10} \) becomes \( \frac{107}{10} \). Getting a common denominator (40) helps us see the difference clearly! For part 2b: \( -34.9 + 71.2 \) simplifies to \( 36.3 \). Remember, subtracting a negative is like adding a positive—just one of those fun quirks of math!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad