Pregunta
\( X Y Z W \) is a parallelogram with diagonals \( \overline{X Z} \) and \( \overline{Y W} \) that interse at point \( A \). If \( Y A=2 t \) and \( W A=3 t-4 \), find \( Y A \). a 8 b \( \quad 10 \) c \( \quad 30 \)
Ask by Cole Medina. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( Y A = 8 \)
Solución
In a parallelogram, the diagonals bisect each other. This means that point \( A \), where the diagonals intersect, is the midpoint of both diagonals \( \overline{XZ} \) and \( \overline{YW} \).
Given:
- \( Y A = 2t \)
- \( W A = 3t - 4 \)
Since \( A \) is the midpoint, \( Y A = W A \). Therefore, we can set up the equation:
\[
2t = 3t - 4
\]
Solving for \( t \):
\[
2t - 3t = -4 \\
-t = -4 \\
t = 4
\]
Now, substitute \( t = 4 \) back into \( Y A \):
\[
Y A = 2t = 2 \times 4 = 8
\]
**Answer:**
**a 8**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find \( Y A \), we know that in a parallelogram, the diagonals bisect each other. Therefore, we have: \[ Y A = A W \] Given that \( Y A = 2t \) and \( W A = 3t - 4 \), we can set these equal to each other: \[ 2t = 3t - 4 \] Now, let’s solve for \( t \). Rearranging gives: \[ 4 = 3t - 2t \] \[ t = 4 \] Now we can substitute \( t \) back into the expression for \( Y A \): \[ Y A = 2t = 2(4) = 8 \] Thus, the length of \( Y A \) is \( 8 \). So the answer is: **a 8**.
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium