Complete this assessment to review what you've learned. It will not count toward your grade. Huang is standing 14 meters from the base of a kite. The kite string makes a \( 67^{\circ} \) angle with the ground. Find \( x \), the length of the kite string. Round to the nearest hundredth. (1 point)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the length of the kite string, we can use trigonometry, specifically the cosine function. The formula here is: \[ \cos(67^{\circ}) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{14}{x} \] Rearranging gives us: \[ x = \frac{14}{\cos(67^{\circ})} \] Calculating \( \cos(67^{\circ}) \) (approximately 0.3907), we get: \[ x \approx \frac{14}{0.3907} \approx 35.8 \] So, the length of the kite string is approximately \( 35.80 \) meters when rounded to the nearest hundredth.