Pregunta
upstudy study bank question image url

The first torm of a geometric sequence is 3 and the sum of the second and third term is 60 . Detamine the first three terms and the general teim Th

Ask by Summers Vaughan. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The first three terms of the geometric sequence are 3, -15, 75 and 3, 12, 48. The general term is \(a_n = 3 \cdot r^{n-1}\), where \(r\) is either -5 or 4.

Solución

Given that the first term of a geometric sequence is 3 and the sum of the second and third term is 60, we can denote the first term as \(a_1 = 3\) and the common ratio as \(r\). The second term of a geometric sequence is given by \(a_2 = a_1 \cdot r\) and the third term is \(a_3 = a_1 \cdot r^2\). We are given that the sum of the second and third term is 60, so we have: \[a_2 + a_3 = 60\] Substitute the expressions for \(a_2\) and \(a_3\) in terms of \(a_1\) and \(r\): \[a_1 \cdot r + a_1 \cdot r^2 = 60\] Substitute \(a_1 = 3\): \[3 \cdot r + 3 \cdot r^2 = 60\] Simplify the equation: \[3r + 3r^2 = 60\] Divide the entire equation by 3: \[r + r^2 = 20\] This is a quadratic equation in terms of \(r\). We can solve this equation to find the value of \(r\), and then use it to find the first three terms of the geometric sequence. Let's solve the quadratic equation \(r + r^2 = 20\). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(r+r^{2}=20\) - step1: Move the expression to the left side: \(r+r^{2}-20=0\) - step2: Factor the expression: \(\left(r-4\right)\left(r+5\right)=0\) - step3: Separate into possible cases: \(\begin{align}&r-4=0\\&r+5=0\end{align}\) - step4: Solve the equation: \(\begin{align}&r=4\\&r=-5\end{align}\) - step5: Rewrite: \(r_{1}=-5,r_{2}=4\) The solutions to the quadratic equation \(r + r^2 = 20\) are \(r = -5\) and \(r = 4\). Now, we can find the first three terms of the geometric sequence using the common ratio \(r\). For \(r = -5\): \[a_1 = 3\] \[a_2 = a_1 \cdot r = 3 \cdot (-5) = -15\] \[a_3 = a_1 \cdot r^2 = 3 \cdot (-5)^2 = 75\] For \(r = 4\): \[a_1 = 3\] \[a_2 = a_1 \cdot r = 3 \cdot 4 = 12\] \[a_3 = a_1 \cdot r^2 = 3 \cdot 4^2 = 48\] Therefore, the first three terms of the geometric sequence are: - For \(r = -5\): 3, -15, 75 - For \(r = 4\): 3, 12, 48 The general term of a geometric sequence is given by \(a_n = a_1 \cdot r^{n-1}\), where \(a_n\) is the nth term, \(a_1\) is the first term, \(r\) is the common ratio, and \(n\) is the term number. So, the general term for \(r = -5\) is \(a_n = 3 \cdot (-5)^{n-1}\) and for \(r = 4\) is \(a_n = 3 \cdot 4^{n-1}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the terms of the geometric sequence, let's denote the first term as \( a = 3 \) and the common ratio as \( r \). The second term is \( ar = 3r \), and the third term is \( ar^2 = 3r^2 \). According to the problem, the sum of the second and third terms is: \[ 3r + 3r^2 = 60. \] Dividing the entire equation by 3 gives us: \[ r + r^2 = 20. \] Rearranging this, we have: \[ r^2 + r - 20 = 0. \] Factoring the quadratic: \[ (r - 4)(r + 5) = 0, \] so \( r = 4 \) (we discard \( r = -5 \) since we want a geometric sequence with positive terms). Thus, our common ratio is 4, and we can find the first three terms: - First term: \( 3 \) - Second term: \( 3 \times 4 = 12 \) - Third term: \( 3 \times 4^2 = 48 \) Thus, the first three terms are 3, 12, and 48. The general term of the geometric sequence can be expressed as: \[ T_n = 3 \cdot 4^{(n-1)}. \] Remember to plug in the term number \( n \) to find any term in the sequence!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad