Pregunta
upstudy study bank question image url

28. Find all roots of polynomial function given by \( f(x)=-2 x^{4}+14 x^{2}-12 x \). 29. If \( a x^{3}+b x^{2}-2 x+8 \) is divided by \( x-2 \) and \( x+1 \) the remainder are 3 and 5 respectivel find the values of \( a \) and \( b \).

Ask by Savage Wagner. in Ethiopia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 28:** The roots of the polynomial \( f(x) = -2x^4 + 14x^2 - 12x \) are: - \( x = 0 \) - \( x = 1 \) - \( x = 2 \) - \( x = -3 \) **Problem 29:** For the polynomial \( ax^3 + bx^2 - 2x + 8 \), the values are: - \( a = \dfrac{19}{12} \) - \( b = -\dfrac{41}{12} \)

Solución

### Problem 28 **Find all roots of the polynomial function \( f(x) = -2x^4 + 14x^2 - 12x \).** **Solution:** To find the roots, we set \( f(x) = 0 \): \[ -2x^4 + 14x^2 - 12x = 0 \] Factor out \( x \): \[ x(-2x^3 + 14x - 12) = 0 \] This gives one root: \[ x = 0 \] Now, solve the cubic equation: \[ -2x^3 + 14x - 12 = 0 \quad \Rightarrow \quad 2x^3 - 14x + 12 = 0 \] Divide the entire equation by 2: \[ x^3 - 7x + 6 = 0 \] **Finding Rational Roots:** Possible rational roots are \( \pm1, \pm2, \pm3, \pm6 \). Testing \( x = 1 \): \[ 1^3 - 7(1) + 6 = 0 \quad \Rightarrow \quad x = 1 \text{ is a root.} \] Factor out \( (x - 1) \): \[ x^3 - 7x + 6 = (x - 1)(x^2 + x - 6) \] Factor \( x^2 + x - 6 \): \[ x^2 + x - 6 = (x + 3)(x - 2) \] **All Roots:** \[ x = 0, \quad x = 1, \quad x = 2, \quad x = -3 \] ### Problem 29 **If \( ax^3 + bx^2 - 2x + 8 \) is divided by \( x - 2 \) and \( x + 1 \), the remainders are 3 and 5 respectively. Find the values of \( a \) and \( b \).** **Solution:** By the Remainder Theorem: 1. When divided by \( x - 2 \): \[ p(2) = 3 \quad \Rightarrow \quad a(2)^3 + b(2)^2 - 2(2) + 8 = 3 \] \[ 8a + 4b - 4 + 8 = 3 \quad \Rightarrow \quad 8a + 4b + 4 = 3 \quad \Rightarrow \quad 8a + 4b = -1 \quad \text{(Equation 1)} \] 2. When divided by \( x + 1 \): \[ p(-1) = 5 \quad \Rightarrow \quad a(-1)^3 + b(-1)^2 - 2(-1) + 8 = 5 \] \[ -a + b + 2 + 8 = 5 \quad \Rightarrow \quad -a + b + 10 = 5 \quad \Rightarrow \quad -a + b = -5 \quad \text{(Equation 2)} \] **Solving the System of Equations:** From Equation 2: \[ b = a - 5 \] Substitute \( b = a - 5 \) into Equation 1: \[ 8a + 4(a - 5) = -1 \quad \Rightarrow \quad 8a + 4a - 20 = -1 \quad \Rightarrow \quad 12a = 19 \quad \Rightarrow \quad a = \frac{19}{12} \] Now, find \( b \): \[ b = \frac{19}{12} - 5 = \frac{19}{12} - \frac{60}{12} = -\frac{41}{12} \] **Final Answer:** - **Problem 28 Answer:** All roots are \( x = 0 \), \( x = 1 \), \( x = 2 \), and \( x = -3 \). - **Problem 29 Answer:** \( a = \dfrac{19}{12} \) and \( b = -\dfrac{41}{12} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the roots of the polynomial function \( f(x)=-2 x^{4}+14 x^{2}-12 x \), we can start by factoring out the common term. It becomes \( -2x(x^3 - 7x + 6) = 0 \). Then, we can look for rational roots using synthetic division or other methods, solving \( x^3 - 7x + 6 = 0 \). The roots will include \( x=0 \) and those obtained from the cubic equation. For the polynomial \( ax^3 + bx^2 - 2x + 8 \) divided by \( x-2 \) and \( x+1 \), we apply the Remainder Theorem. Plugging in \( x=2 \), we get \( 8a + 4b - 4 + 8 = 3 \); solving gives \( 8a + 4b = -9 \). For \( x=-1 \): \( -a + b + 2 + 8 = 5 \) leads to \( -a + b = -5 \). With these two equations, you can solve for \( a \) and \( b \) using substitution or elimination methods, ultimately providing the desired coefficients.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad