Pregunta
upstudy study bank question image url

Converting the following recurring decimals to common fractions in the simplest form: \( \begin{array}{lll}\text { (a) } 0, \dot{8} & \text { (b) } 0, \dot{6} \dot{3} & \text { (c) } 0, \dot{3} 1 \dot{2}\end{array} \)

Ask by Byrd Ford. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **(a)** \( \frac{8}{9} \) - **(b)** \( \frac{7}{11} \) - **(c)** \( \frac{103}{330} \)

Solución

Sure, let's convert each of the recurring decimals to their simplest fractional forms. ### (a) \( 0, \dot{8} \) (which represents \( 0.\overline{8} \)) **Step-by-Step Conversion:** 1. Let \( x = 0.\overline{8} \). 2. Multiply both sides by 10 to shift the decimal: \( 10x = 8.\overline{8} \). 3. Subtract the original equation from this result: \[ 10x - x = 8.\overline{8} - 0.\overline{8} \Rightarrow 9x = 8 \] 4. Solve for \( x \): \[ x = \frac{8}{9} \] **Simplest Form:** \( \frac{8}{9} \) --- ### (b) \( 0, \dot{6}\dot{3} \) (which represents \( 0.\overline{63} \)) **Step-by-Step Conversion:** 1. Let \( x = 0.\overline{63} \). 2. Multiply both sides by 100 to shift the decimal two places: \( 100x = 63.\overline{63} \). 3. Subtract the original equation from this result: \[ 100x - x = 63.\overline{63} - 0.\overline{63} \Rightarrow 99x = 63 \] 4. Solve for \( x \): \[ x = \frac{63}{99} \] 5. Simplify the fraction by dividing numerator and denominator by 9: \[ \frac{63}{99} = \frac{7}{11} \] **Simplest Form:** \( \frac{7}{11} \) --- ### (c) \( 0, \dot{3}1\dot{2} \) (which represents \( 0.3121212\ldots \) or \( 0.3\overline{12} \)) **Step-by-Step Conversion:** 1. Let \( x = 0.3\overline{12} \). 2. Break it into two parts: the non-repeating part \( 0.3 \) and the repeating part \( 0.\overline{12} \). - **Non-repeating Part:** \( 0.3 = \frac{3}{10} \) - **Repeating Part:** 1. Let \( y = 0.\overline{12} \). 2. Multiply by 100 to shift the decimal two places: \( 100y = 12.\overline{12} \). 3. Subtract the original equation: \( 100y - y = 12.\overline{12} - 0.\overline{12} \Rightarrow 99y = 12 \). 4. Solve for \( y \): \( y = \frac{12}{99} = \frac{4}{33} \). 5. Since this part starts after the first decimal place, divide by 10: \( \frac{4}{33} \times \frac{1}{10} = \frac{4}{330} \). 3. Combine both parts: \[ x = \frac{3}{10} + \frac{4}{330} = \frac{99}{330} + \frac{4}{330} = \frac{103}{330} \] **Simplest Form:** \( \frac{103}{330} \) --- **Final Answers:** - **(a)** \( \frac{8}{9} \) - **(b)** \( \frac{7}{11} \) - **(c)** \( \frac{103}{330} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To convert the recurring decimals to common fractions, here’s how you can do it! For \(0.\dot{8}\): Let \(x = 0.\dot{8}\). Then, multiplying by 10 gives \(10x = 8.\dot{8}\). Subtracting the original from this results in \(10x - x = 8\), which simplifies to \(9x = 8\). Therefore, \(x = \frac{8}{9}\). For \(0.\dot{6} \dot{3}\): Let \(y = 0.\dot{6} \dot{3}\). Then, multiplying by 100 gives \(100y = 63.\dot{6} \dot{3}\) and multiplying by 10 gives \(10y = 6.\dot{6} \dot{3}\). Now, subtracting gives \(100y - 10y = 63 - 6\), leading to \(90y = 57\) or \(y = \frac{57}{90}\). Simplifying gives \(y = \frac{19}{30}\). For \(0.\dot{3} 1 \dot{2}\): Let \(z = 0.\dot{3} 1 \dot{2}\). By multiplying by 1000 we get \(1000z = 312.\dot{3} 1 \dot{2}\), and also multiply by 10 gives \(10z = 3.\dot{3} 1 \dot{2}\). Subtracting these two gives \(1000z - 10z = 312 - 3\), leading us to \(990z = 309\) or \(z = \frac{309}{990}\). Simplifying this gives \(z = \frac{103}{330}\). So, the simplest forms are: (a) \(\frac{8}{9}\), (b) \(\frac{19}{30}\), (c) \(\frac{103}{330}\). Happy fraction converting!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad