Converting the following recurring decimals to common fractions in the simplest form: \( \begin{array}{lll}\text { (a) } 0, \dot{8} & \text { (b) } 0, \dot{6} \dot{3} & \text { (c) } 0, \dot{3} 1 \dot{2}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To convert the recurring decimals to common fractions, here’s how you can do it! For \(0.\dot{8}\): Let \(x = 0.\dot{8}\). Then, multiplying by 10 gives \(10x = 8.\dot{8}\). Subtracting the original from this results in \(10x - x = 8\), which simplifies to \(9x = 8\). Therefore, \(x = \frac{8}{9}\). For \(0.\dot{6} \dot{3}\): Let \(y = 0.\dot{6} \dot{3}\). Then, multiplying by 100 gives \(100y = 63.\dot{6} \dot{3}\) and multiplying by 10 gives \(10y = 6.\dot{6} \dot{3}\). Now, subtracting gives \(100y - 10y = 63 - 6\), leading to \(90y = 57\) or \(y = \frac{57}{90}\). Simplifying gives \(y = \frac{19}{30}\). For \(0.\dot{3} 1 \dot{2}\): Let \(z = 0.\dot{3} 1 \dot{2}\). By multiplying by 1000 we get \(1000z = 312.\dot{3} 1 \dot{2}\), and also multiply by 10 gives \(10z = 3.\dot{3} 1 \dot{2}\). Subtracting these two gives \(1000z - 10z = 312 - 3\), leading us to \(990z = 309\) or \(z = \frac{309}{990}\). Simplifying this gives \(z = \frac{103}{330}\). So, the simplest forms are: (a) \(\frac{8}{9}\), (b) \(\frac{19}{30}\), (c) \(\frac{103}{330}\). Happy fraction converting!